KNOWLEDGE MEDIA
\\
| ‘ |

r

D

\) \ \ _ -
— e —— e, cot—

BN B S R SR LS U

Evolva: Towards Automatic Ontology Evolution

Technical Report kmi-08-04
October 2008

Fouad Zablith

The Open University

Abstract

Ontologies form the core of Semantic Web systems, and as such, they need to evolve to meet
the changing needs of the system and its users. Information is exponentially increasing in
organizations’ intranets as well as on the web, especially with the increased popularity
of tools facilitating content generation such as wikis, blogs and social software. In such
dynamic environments, evolving ontologies should be agile, i.e. with the least knowledge
experts’ input, for reflecting fast changes occurring in repositories, and keeping Semantic
Web systems up-to-date. Most of current ontology evolution frameworks mainly rely on
user input throughout their evolution process.

We propose Evolva, an ontology evolution framework, aiming to substantially reduce or
even eliminate user input through exploiting various background knowledge sources. Back-
ground knowledge exists in various forms including lexical databases, web pages and Se-
mantic Web ontologies. Evolva has five main components: information discovery, data val-
idation, ontological changes, evolution validation and evolution management. We present
in this report an overview of the current work on ontology evolution, followed by our on-
tology evolution approach and pilot study conducted so far, and we finally conclude with
a discussion and our future directions.

Contents

Introduction
1.1 Motivation e e
1.2 Outline s

Literature Review

2.1 Ontology Evolution Requirements

2.2 Sources of Ontology Changes and Evolution
2.2.1 Evolution as the Management of Changes
2.2.2 Evolution from External Data Sources

2.3 Conclusion and Major Gaps

Research Proposal

3.1 Research Question

3.2 Proposed Approach
3.2.1 Ontology Evolution Framework: Evolva
3.2.2 Background Knowledge Supporting Evolva,

Pilot Study
4.1 Scenario Description L L L
4.2 Information Extraction. L L
4.3 Concepts Extracted Vs. Base Ontology Concepts
4.4 Relation Discovery Experiment
4.4.1 Experimental Data
4.4.2 FEvaluation of the WordNet based Relation Discovery
4.4.3 Evaluation Results for Scarlet
444 Frror Analysiso
4.5 Observations on Integrating Relations into the Base Ontology
4.6 Experiment Conclusion L o
4.7 System Implementation 0oL
4.7.1 String Matching
4.7.2 Text20nto Integration oL

(=)

10
11
11
14
16

18
18
19
19
22

4.7.3 WordNet Relationship Path

4.7.4 Scarlet Relation Discovery Integration

5 Discussion and Future Work

References

List of Figures

1.1

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Data Integration in Semantic Web Ontology 7
Evolva for Evolving Ontologies from External Data Sources 20
Evolva Framework Main Components 20
Evolva Framework: Detailed View 21

Finding Relations Between New Terms and The Base Ontology in Evolva . 23

Extracted Concepts Compared to the Base Ontology 27
The Wu and Palmer Concept Similarity Measure 28
Pilot System Current Status Covering Shaded Nodes 35
Screenshot: String Matching Results Example 36
Screenshot: Reading Corpus Directory 36
Screenshot: Activating WordNet Matching 37
Relation Discovery with Scarlet 38

List of Tables

2.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

Existing Work Vs. Requirements Coverage 17
Text20nto Evaluation on 20 KMi News Articles 25
Concepts Relevance Based on SubClassOf Relation with Exact Matchings . 26
Examples of Relations Derived by Using WordNet 29
Evaluation Results for the Relations Derived from WordNet. 30
Examples of Relations Discovered Using Scarlet 30
Evaluation Results for the Relations Derived with Scarlet 31
Correlation Between the Length of the Path and the Correctness of a Relation 32
Bad Examples of WordNet Relationship Paths 33

Part 1

Introduction

Ontology evolution is defined in [10] as the “timely adaptation of an ontology to the arisen
changes and the consistent management of these changes”. Ontologies form the core of
Semantic Web systems, and as such, they need to evolve to meet the changing needs of
the system and its users (e.g. new data or functionalities introduced). This report goes
through the analysis of current approaches on ontology evolution, and presents our research
proposal, coupled with our experimental and implementation work under process. Parts
of this report will be published in [40] and [41].

1.1 Motivation

It is well recognized today that the use of ontologies could improve data reuse and acces-
sibility. Thus the integration of the content from various data sources into an ontology, as
displayed in Figure 1.1, is the target of many organizations nowadays. A motivating use
case is the KMi Semantic Web portal® based on the extended AKT reference ontology?.
The content of this ontology, both in terms of structure and instances, needs to be kept
up-to-date by painstaking manual efforts. A mix of structural and instance changes in the
ontology could be triggered from the regular publication of KMi news articles that lead
to the continuous introduction of new concepts and instances. Another source of ontology
change could be from new projects or technologies arising in KMi databases, leading to
instance changes. Those changes will surely be coupled with structural changes through,
for example, allocating existing/new resources (e.g. KMi people, external organizations)
to the technology or project introduced, requiring the creation of corresponding links and
relations. These are just a few examples showing the extensive work needed at the ontology
level, to reflect the KMi domain everyday changes.

Evolving an ontology is a time consuming task, and relies on considerable input from

'http://semanticweb.kmi.open.ac.uk
http://kmi.open.ac.uk/projects/akt /ref-onto/index.html

Text Docs\

. Lo
<project, hot, semantic web...> ax f@ J q‘a_ >

L <meeting, minutes, review...>
& | <equipment, PC, monitor...>

L ¥
:) &
H\<...> J \‘ - g @ J
@

Data Sources Base Ontology

Figure 1.1: Data Integration in Semantic Web Ontology

a user with knowledge representation skills. Various works target the issue of updating
or evolving ontologies from external data sources [22, 26]. However, user input is usually
required during evolution, especially at the level of performing changes. This is often
due to the limited information residing in sources from which the evolution of ontology is
performed, as well as the additional reasoning required to resolve the right links between
entities, and complete information. Our research is motivated by the hypothesis that:

(Online) knowledge and various data sources could be explored to significantly
decrease or even eliminate user input in the evolution process, thus rendering
it dynamic.

We understand background knowledge as a range of data sources with various levels of
formality including web pages formed of unstructured text such as Wikipedia, lexical
databases such as WordNet [9] and FrameNet [2], and online ontologies.

Background knowledge can support finding relationships between new knowledge dis-
covered, and existing knowledge in the domain ontology, which we call “base ontology”.
For example, the lexical database WordNet identifies “European Union”, a new instance
discovered in the KMi news articles, as a kind of “Organization”, a concept defined in the
base ontology.

Background knowledge helps as well in completing information not available to the
scope of the system. Consider the case of adding to the base ontology a publication co-
authored by Enrico Motta and Peter Haase. KMi’s data sources hold significant information
about Enrico Motta, who works at KMi. However, Peter Haase who is not part of KMi,
requires additional effort to identify him as a person with additional details such as current
position, address, other publications, etc. These details are, however, available in online
Semantic Web data.

1.2 Outline

In the next part of this report we present our literature review in which we talk about the
requirements of ontology evolution, sources of ontology changes, evolution as the manage-
ment of changes as well as from external data sources. In Part 3 we talk about our research
problem and proposed approach, followed by our pilot study in Part 4 that includes as well
an experiment on relation discovery. Then (in Part 5) we conclude the report with our

research plan and discussion.

Part 2

Literature Review

We present in this part related work in our research field, and identify existing gaps in cur-
rent approaches. Ontology evolution is not only about performing changes, but it handles
as well the management of changes, while maintaining the ontology’s consistency. Many
work targeted ontology changes from different perspectives through ontology population,
learning or versioning, and sometimes used the term evolution in their methods, even if
their work covers only a portion of the processes that happen during evolution.

Ontology population deals with adding instances to an ontology starting from struc-
tured or semi-structured external data sources, without dealing with structural changes
of the corresponding ontology. Ontology population could be performed by creating a set
of mappings between the data source and the ontology [18]. The possibility of having
inconsistencies as a result of ontology population is low, as the source and target of data
population are well defined. Hence dealing with inconsistencies at the level of ontology
population is not taken into consideration.

Ontology learning is the process of extracting information from data sources, and trans-
forming them into ontology concepts, instances and relations. Examples of ontology learn-
ing tools are Text20nto [6] and OntoLearn [35], which learn ontologies from text. Ontol-
ogy learning tools do not deal with extensive management of ontology changes. Extracted
terms are usually supplied with a domain relevance value that could be based on the Term
Frequency Inverse Document Frequency (TFIDF) in the case of Text20nto, or a domain
relevance formula specific to OntoLearn.

Ontology versioning handles the creation and management of ontology versions, taking
into account the consistency and compatibility between different versions. Various works
involve ontology versioning, such as the work on ontologies in dynamic environments based
on the SHOE [19] knowledge representation language [13].

We understand ontology evolution as the structural and instances adaptation of the on-
tology to changes occurring in the domain, coupled with the management of these changes.
We consider ontology evolution as a process starting from data sources that contain valu-

able information about the represented domain, as well as aiming to keep the ontology
operational and consistent. Our target is to make the evolution process occur with the
least user input possible.

2.1 Ontology Evolution Requirements

Various work analyzed ontology evolution, and identified a series of requirements for making
the evolution more efficient. First, an ontology should remain consistent throughout the
evolution process [32]. Second, the option to be a supervised evolution [33] should be
available, as users sometimes prefer to have control over changes happening. A third
requirement is to be semi-automated and to notify the users when an evolution should
occur.

Applying changes to an ontology can sometimes be very hard to maintain, especially in
cases where changes could flag a chain of changes across the system. This is where change
propagation [16, 30] is required to update all the ontology dependent components. Tools
have been developed to assist users in spotting all the required changes to apply in order to
avoid inconsistency [33]. Some works suggest resolving inconsistencies by applying different
ontology revisions [12]. But this would lead to problems in merging information from the
different ontology versions. The latter issue is tackled by the use of backward-compatibility
that is implemented in SHOE [19], a “prototype ontology language”, to detect whether the
models represented in two different ontology versions are compatible [12]. It is introduced
to detect the consistency in the meanings of two versions of an ontology, making it safe as
well to merge information between both versions.

Through our scenario analysis and literature review, we identify the following additional
requirements for ontology evolution: (1) We believe that in most of the cases, domains are
represented by a mix of different data sources. With today’s diversity of tools and data
repositories, ontology evolution should handle knowledge discovery from different data
sources ranging from unstructured data such as text or tags, to structured data such as
other ontologies and databases. (2) In order to make the evolution as agile as possible,
performing ontology changes should be performed with the least or even without user input.
(3) As ontology evolution is an ongoing process, time related knowledge should be handled
correctly for avoiding conflicts in data. (4) With the presence of multiple-data sources,
it’s likely to have duplication in data during evolution, raising the need for automated or
semi-automated duplication check.

Ontology evolution requirements can be summarized in the following compiled list:

R1. The ontology should remain consistent during evolution, through resolving for exam-
ple time related and duplication inconsistencies.

R2. Relevant and validated information should be extracted from different types of data
sources: structured, semi-structured and unstructured.

10

R3. For a fast adaptation to changes, ontology evolution should occur with the least or
even without user input i.e. dynamic.

RA4. Changes should be recorded and propagated to the ontology dependent components.
R5. Users should have a degree of control over the evolution.

R6. Ontology evolution should be as domain independent as possible.

2.2 Sources of Ontology Changes and Evolution

We realize that handling ontology changes is viewed from two different perspectives. The
first set of approaches looked at the evolution of ontologies as the management of changes
performed by knowledge engineers. In this case ontologies are considered closed entities,
without exploring external data sources to identify the need for changes. A second set of
approaches made use of information residing in external data sources to perform automated
ontology changes. We discuss these two lines of work in the next subsections.

2.2.1 Evolution as the Management of Changes

Various work has been done on the analysis of ontology changes and evolution, and viewed
the ontology as a closed entity, undergoing changes from the ontology designer. They
mainly dealt with the management of changes for supporting knowledge engineers. In
this section we present various approaches that looked at ontology evolution from this
perspective.

Ontologies should not be treated as text documents while tracing their evolution, but
structural and semantic changes are the important components to track. There are many
tools that track changes in an ontology such as PromptDiff [25].

PromptDiff is an ontology-versioning tool supporting knowledge engineers in collabo-
rative development environments. It tracks structural changes in ontologies and flags as
well if a mapping should be updated when one of the mapped ontologies has changed.
PromptDiff has an API to hook external applications for comparing ontologies, with the
ability for the ontology editor to accept or reject the changes. This tool can be downloaded
from the Protégé plugins website. However, it seems that PromptDiff captures only the
structural changes without handling instance changes [25].

Other approaches propose having an evolution log where all changes happening to
an ontology are recorded [30]. This could make tracing and rolling back changes easier.
Ontologging [20] is another example of evolution tracer tools, which analyses as well the
effects of changes performed on the ontology. Databases have been as well used in managing
ontology evolutions, by storing in tables the changes done at the ontology level or the
ontology’s metadata level [4].

11

In Text20nto [6], a pointer is used to keep track of the data changes, presenting an
ontology evolution traceability feature to the end-user. In this model it is even possible to
keep track of various inconsistent scenarios, and giving the users the ability to assess “the”
consistent ontology.

OntoAnalyzer is a tool to trace complex ontological changes. The authors of the paper
[27] state that OntoAnalyzer has an advantage over the KAON framework [37], which is
able to handle only elementary changes. Comparing it to PromptDiff [25] and OntoView
[15], which identify the changes in different ontology versions without taking complex
changes into account, OntoAnalyzer allows the tracing of complex changes by keeping a
log of the operations performed on the ontology.

In his thesis [14], Klein targets the management side of distributed ontologies. The
author uses existing approaches in other fields such as databases, and applies them to
Semantic Web ontologies. The way change is applied to ontologies in Kleins thesis is
through an ontology of change, where possible changes to ontologies are instances of the
ontology of change. They are represented in RDF data. The thesis mainly deals with
evolution management, and how it could assist ontology engineers maintaining the ontology.
Klein makes use of ontology versioning for managing changes and spotting inconsistencies.
He stated that dealing with ontology evolution raises the support of: Transforming data
from the old ontology version to the new one; continuous data access even if the data is
not yet been transferred from the old to new ontology version; propagating the changes
to remote ontologies; consistency between ontologies versions; and lastly users verification
and approval.

Stojanovic [31], identifies two types of ontology ontology evolution: top-down and
bottom-up evolution. The first occurs when changes are done in the requirements of users
such as adding new functionalities to the system. A bottom-up approach is when changes
come from within the ontology such as a new inferred relation coming from relation analy-
sis performed on the ontology intself. Additionally, Stojanovic [30] identifies three different
sources of ontology change discovery:

— Usage-driven change discovery derived from the end-user behaviour representing the
likes/dislikes.

— Data-driven change discovery derived from the analysis of existing ontologys instances
by using for example data-mining techniques.

— Structure-driven change discovery based on the ontology structure analysis.

Stojanovic [30] proposed a framework for evolving ontologies mainly triggered by inter-
nal sources of change from within the ontology. The framework is a six phases cyclic process
starting with the change capturing phase where changes to be applied to the ontology are
identified. Then there is the representation phase where the changes are represented in
the ontology. The third phase is the semantics of change phase including syntactic and

12

semantic inconsistencies that could arise as a result of ontological changes [34]. A syntactic
inconsistency covers cases such as violating constraints or using entities and concepts that
have not been defined in the ontology. A semantic inconsistency is when an entity’s mean-
ing changes during the evolution process [31]. The fourth phase is the implementation of
change phase coupled with user interaction for approving or cancelling changes. Change
propagation is the fifth phase, allowing the update of outdated instances as well as recur-
sively reflecting changes in referenced ontologies in the case of having networked ontologies.
The final phase is the validation phase to insure that the changes propagated are valid, and
allows the user to undo the changes performed on the ontology. Stojanovic implements the
six phases framework without capturing changes from external data sources.

Stojanovic [31] defines various evolution strategies. Building a strategy consists of a set
of specific evolution cases such as adding a class, with the set of effects, and the action to
take once triggered. Changes in ontologies have been categorized in a tabular representation
throughout various papers [24, 31]. This representation could help in specifying the needed
evolution “actions” in the ontology. For example there are cases to define when to delete
the instances of a deleted class C, or when to keep its instances: should instances of type
C not be deleted when C got a superclass [24]7 Possible advanced evolution strategies
[31] are (1) structure-driven which takes into account structure preferences (such as a
deep or shallow hierarchy), (2) process-driven by setting specific constraints such as time
or maximum number of instances, (3) instance-driven in the cases where instances are
created heavily and (4) frequency-driven strategy that takes into consideration the most
or last-used strategies.

Similar to Klein’s ontology of change [14], Stojavonic proposes an evolution ontology,
which is a meta-ontology for representing different changes transactions on an ontology. It
is created in order to unify the representation of changes across the evolution environment.
The core concept in the evolution ontology is the “Change” concept with the following
sub-concepts:

AddConcept C AdditiveChanges C ElementaryChanges C Change

The evolution ontology represents dependencies using the “causesChange” property,
which enables as well to reverse effects of the applied change. Other properties as well help
going to a previous state of the ontology [30].

Formalizing ontology changes is highly important for our research, especially that we
are working on performing the changes dynamically. Such ontology of changes could be
reused in our framework.

Noy et al. [23] describe a framework for ontology evolution in collaborative environ-
ments. The framework is scenario based and consists of various Protégé! plugins. Siorpaes
[29] describes as well the need of a community-driven lightweight ontology evolution, hav-

"http://protege.stanford.edu

13

ing a Wiki based technique for collaboratively building ontologies. However, even though
Google, Wikipedia or WordNet are proposed as sources for background enrichment, the
source of ontology evolution is limited to the collaborative input of the users, without
dealing with ontology learning from external sources.

DILIGENT [38] is a decentralized user-centric framework proposing an ontology en-
gineering methodology targeting “user-driven” ontology evolution, rather than its initial
design. At a glance, the process starts by having a core ontology collaboratively built by
users. After the building step, the ontology will be locally adapted without changing the
core ontology. A board of users will then analyze the local changes, in order to come up
with the changes that need to be incorporated in the shared ontology. The requests of
changes are supported by arguments using an argumentation framework in order to come
up with a balanced decision reflecting all the evolving requests. The changes are revised
by the board of knowledge experts in order to maintain compatibility between different
versions. The evolution of the ontology is a result of the decided changes to apply. Finally
the shared evolved ontology is locally adapted at the different involved locations.

The management of ontology changes is crucial in ontology evolution. We will reuse
various approaches in the field and investigate their added-values to our work at a later
stage our research.

2.2.2 Evolution from External Data Sources

Various approaches focus on ontological changes from external data sources such as text
documents [3, 6, 22, 26, 35], metadata [21] and databases [11]. Most of the work involved
in ontology changes from external sources are categorized as ontology learning tools such
as Text20nto [6] and OntoLearn [35]. These tools are not complete evolution systems as
the management of changes is not handled to the extend to present high quality ontologies.
Additionally, users do not have a well developed degree of control during the evolution.

Text20nto [6] is designed to overcome the limitations of ontology learning tools from
text, such as: domain dependency, lack of user interaction during the ontology learning pro-
cess and running the learning process from scratch whenever a change occurs in the corpus.
Text20nto uses a new Probabilistic Ontology Model, coupled with data-driven change dis-
covery that enables specific changes detection without processing all the documents again.
In this case data-driven changes are changes occurring in text documents. This tool assigns
a degree of certainty about the learning process making it easier for the user to interact.
In addition to the extraction of concepts and instances, Text20nto includes algorithms
to extract various types of relations including “Instance-of”, “Subclass-of”, “Part-of” and
other general relations.

Bloehdorn et al. [3] based their work on the six phases ontology evolution process pro-
posed by Stojanovic [30]. However, they consider data-driven changes as changes happen-
ing in external data sources such as the addition and deletion of documents in a corpus, as
well as changes occurring in databases [11]. The authors identify that valuable information

14

reside in databases and documents, but require better structuring and easy accessibility
through the use of ontologies. They propose an architecture applied in a digital library
domain or other electronic repositories, and they make use of ontology learning algorithm
for extracting document contents. In addition to the data-driven changes, they integrate
a usage-driven source of ontology changes, dealing with the analysis of user behavior and
contextual search history for refining the ontology.

However the process is semi-automatic, and returns back suggestions to the user about
potential ontology changes coming from ontology learning algorithms.

DINO [17, 22] is a framework for integrating ontologies. Part of its processes include
a semi automatic integration of learned ontologies with a master ontology built by ontol-
ogy designers. It includes the use of ontology alignment, coupled with agent-negotiation
techniques, to generate and select mappings between learned ontologies from text and the
base ontology.

In more details, Text20Onto is used to extract information from documents in the DINO
framework. The learning algorithms of Text20nto are customized through a user interface,
and the confidence values of extracted terms are fed to an ontology alignment/negotiator
wrapper [22].

The learned ontology representing new concepts, and the master ontology collabora-
tively developed by the knowledge experts are aligned, i.e. a set of mappings between the
classes, entities and relations of the two ontologies are set using an alignment wrapper.
The agreement of the semantics used is reached through negotiation using a negotiation
wrapper. An axiom ontology, which contains the merging statements between the learned
and the master ontology is created.

The statements in the axiom ontology are used as input for a reasoning and management
wrapper, responsible for merging the learned ontology with the master ontology. Inconsis-
tencies are checked at this level using the Jena OWL DL reasoner, giving the priority to
the master ontology statements. Solving inconsistencies is elaborated more in the paper.
In the case of having many possible candidates to be removed, the confidence returned by
Text20nto is relied on [22].

The resulting ontology is passed to the ontology diff wrapper that spots the changes
brought to the master ontology using the SemVersion [36] library. The changes are sorted
according to a relevance measure, leaving the choice of only presenting highly relevant
changes to the users. The authors propose a mapping between the changing triples to
natural language, in order to represent changes to users who are not familiar with technical
OWL representations [22].

However, relying on the Text20nto confidence for deciding which candidate to remove
has a downside. This is because the confidence is based on the TFIDF measure, which does
not perform well in cases when the number of documents in the corpus is low. Another
limitation of the DINO approach is that the final knowledge integration decision is not
automated, but left to the user.

Dynamo [26] is another tool that falls in the exploration of external data sources for

15

building ontologies. It consists of a multi-agent system for dynamic ontology construction
from domain specific set of text documents. Dynamo is a semi-automated tool that requires
in its process, next to text sources, an ontology designer. It uses adaptive multi-agent
system architecture, and proposes a framework where the ontology designer interacts with
the system during the process of building the ontology. The system considers the extracted
entities from text sources as separate agents, which are related to other entities (agents)
through a certain relationship. In other words, an ontology is treated as a multi-agent
system. In addition to be domain specific, another limitation of Dynamo is that it generates
simple concept hierarchy and not extended semantic hierarchies. Another drawback of the
system is that the output depends on the order of the input data fed in the system.
Handling taxonomy maintenance is also not well developed, as the system addresses only
the low level structure of concept hierarchy and not the middle layer.

2.3 Conclusion and Major Gaps

We realize that automating knowledge modeling in the form of ontologies is approached
from different perspectives: Ontology population and learning that deal with discovering
knowledge from external data sources. Ontology versioning dealing with the management
of different ontology versions, and ontology evolution through which some of the approaches
considered it as a management of changes, while others included external data sources in
the evolution process.

The literature review shows that there’s no complete ontology evolution framework
that tries to meet all the requirements mentioned earlier in section 2.1. Table 2.1 lists the
previously mentioned work and how they meet the ontology evolution requirements. The
last row of the table shows Evolva, our ontology evolution framework, with the aim to
cover all the requirements in the list. We talk about Evolva in more details in the research
proposal Part 3.

Our overview about ontology evolution and the tools available in the domain helped
identifying two major gaps in our research field:

1. All described systems mainly rely on user input during the ontology evolution process.

2. Moreover, no system considers the use of background knowledge to support ontology
evolution.

16

Consist- Ezxternal Change User Con- | Evolution | Automatic
ency Data Propaga- trol Tracing Evolution
Check Sources tion

Stojanovik (30, 10] [30] [30] (30, 10]

Klein [14] [14] [14] [14, 25]

Noy [23] [23, 25]

Haase [10] [11] [10]

DILIGENT [38] [38]

DINO (22, 17] (22, 17]

Dynamo [26]

Text20nto [6] 6] [6]

OntoLearn [35]

OntoAnalyzer| [27] [27]

PromptDiff [25]

Ontologging | [20] [20]

Evolva’s v v v v v v

Target

Table 2.1: Existing Work Vs. Requirements Coverage

17

Part 3

Research Proposal

In this part we present our research proposal. We start with our research question and
break it into four sub-questions. Then we discuss our proposed approach that includes
Evolva, our ontology evolution framework, supported by a gradual background knowledge
harvesting technique.

3.1 Research Question

Our research question is

How to perform ontology evolution starting from heterogeneous data sources,
and support the evolution by various background knowledge for substantially
reducing, or even eliminating user input?

Our research question can be divided into four more focussed sub-questions:

Q.1. How to extract new and relevant information? A first step in an ontology evo-
lution process is the identification of new and relevant information that should be
added to the base ontology. Such information can reside in text corpora, databases
and ontologies, making them a good source of discovering potential changes. These
data sources should be processed for identifying and extracting concepts, relations
and entities, relevant to the base ontology.

Q.2. How to perform ontological changes dynamically? Extracted information from
data sources should be added to the base ontology without relying on user input,
with the corresponding relations to existing knowledge in the base ontology. Rela-
tions should be discovered automatically by exploring background knowledge sources,
and by taking into account the related entities’ contextual meaning. For example,
“degree” could refer to an academic degree in the education context, or to a unit-of-
measure in the physics context with different types of relations.

18

Q.3.

How to validate the evolved ontology? During evolution, inconsistencies could
occur due to conflicts in statements, data duplication and temporal related facts.
These phenomena are particularly likely to arise in cases when evolution is informed
by knowledge extracted from multiple heterogeneous data sources, with various de-
grees of quality. A temporal inconsistency example is when some of the current KMi
news articles mention Peter Scott as KMi’s director, conflicting with news published
during the period when Enrico Motta was the director of KMi. Such inconsistencies
should be identified and resolved.

. How to manage the evolution? After validating the evolved ontology, its depen-

dent components, such as other ontologies or applications, should be notified with
the performed changes for ensuring compatibility. Another requirement is to be able
to follow-up the evolution process, and present to the user a degree of control for
monitoring and spotting unresolved problems.

3.2 Proposed Approach

We propose Evolva, an ontology evolution framework that explores various background
knowledge sources to evolve ontologies and reduce user input.

3.2.1 Ontology Evolution Framework: Evolva

Evolva will play the role of mediator between the traditional data repositories, and the
base ontology as displayed in Figure 3.1. Our framework is formed of five components
visualized in Figure 3.2. We present a detailed view of our framework in Figure 3.3. In the
rest of this part, we discuss the components of our ontology evolution framework.

Information discovery. One way to detect new knowledge to be added to the base ontol-

ogy is by contrasting it to information contained in external domain and application
specific sources, such as text corpora, databases or other ontologies. Unstructured
data such as text documents or tags, require information extraction or ontology
learning tools such as Text20nto [6]. Text20nto has many features including the
extraction of concepts, instances and relations from text. External ontologies and
databases present a more structured source of information, where concepts, relations
and instances are explicitly encoded in a well-defined structure. However, a transla-
tion should be applied on exploited ontologies to ensure language compatibility with
the base ontology. In the case of databases, a transformation should be performed to
encapsulate the database schema and entities in an ontology compatible language.

Data validation. The discovered information are validated by applying a set of heuristic

rules. For example, most of the two-letter concepts extracted by Text20nto from
KMi’s news corpora such as “cu” and “th” are meaningless and should be discarded.

19

~

Text Docs

<project, hot, semantic web...>
L1 <meeting, minutes, review...>
S| <equipment, PC, monitor...>

=

e))

Data Sources Background

@, D&
4 @ o4
& @ @ \»/7 y e
@
Base Ontology

Figure 3.1: Evolva for Evolving Ontologies from External Data Sources

Evolva

Information Data Ontological Evolution
Discovery Validation Changes Validation

Evolution

Management

Lexical
BDs
Semantic
Web

Background Knowledge

Figure 3.2: Evolva Framework Main Components

20

Un-

structured
Data

External
Ontologies,

Databases

Ontological
Changes

/

= Processes
___________________ Evolved
Ontology
Information 4 Data N
Discovery Validation

Quality

Relation

Translation

Recording
Changes

N J Admin
Control
Base Backgrnd)
Ontology Knowledge, Evolution

Management

-

Figure 3.3: Evolva Framework: Detailed View

/

Ontologies and databases do not need this kind of low level quality check as the
content structure is more trusted, and the type of information is explicitly defined.

Ontological changes. This component deals with performing changes to the ontology.

Validated information are linked to the base ontology through a relation discovery
mechanism, which relies of a set of background knowledge sources. After resolving the
relations, corresponding changes are performed on the base ontology using a prede-
fined set of encapsulated ontology changes as described by Klein [14] and Stojanovic
[30].

Evolution validation. As mentioned earlier, performing ontological changes could gener-

ate some problems such as conflicting statements, data duplication and time related
inconsistencies. We deal with these problems at the level of the evolution validation
component, formed of the consistency and duplication checks, as well as the temporal
reasoning process.

Evolution management. The approved ontology is passed to the evolution management

component. In this component, the changes performed on the ontology are recorded
to ensure functionalities such as tracing or rolling back changes. The changes are then
propagated to dependent ontologies and applications. The administrator control is
supplied for monitoring purposes, setting the evolution parameters and resolving any
additional problem.

21

3.2.2 Background Knowledge Supporting Evolva

A core task in most ontology evolution scenarios is the integration of new knowledge into the
base ontology. We focus on those scenarios in which such new knowledge is extracted as a
set of emerging terms from textual corpora, databases, or domain ontologies. Traditionally
this process of integrating a new set of emerging terms is performed by the ontology curator.
For a given term, he/she would rely on his/her own knowledge of the domain to identify, in
the base ontology, elements related to the term, as well as the actual relations they share.
As such, it is a time consuming process, which requires the ontology curator to know well
the ontology, as well as being an expert in the domain it covers.

Evolva makes use of various background knowledge sources to identify relations between
new terms and ontology elements. The hypothesis is that a large part of the process
of updating an ontology with new terms can be automated by using these sources as
an alternative to the curator’s domain knowledge. We have identified several potential
sources of background knowledge. For example, thesauri such as WordNet have been long
used as a reference resources for establishing relations between two given concepts, based
on the relation that exists between their synsets. Because WordNet’s dictionary can be
downloaded and accessed locally by the system and because a variety of relation discovery
techniques have been proposed and optimized, exploring this resource is quite fast. Online
ontologies constitute another source of background knowledge which has been recently
explored to support various tasks such as ontology matching [28] or enrichment [1]. While
the initial results in employing these ontologies are encouraging, these techniques are still
novel and in need of further optimizations (in particular regarding time-performance).
Finally, the Web itself has been recognized as a vast source of information that can be
exploited for relation discovery through the use of so-called lexico-syntactic patterns [5].
Because they rely on unstructured, textual sources, these techniques are more likely to
introduce noise than the previously mentioned techniques which rely on already formalized
knowledge. Additionally, these techniques are also time consuming given that they operate
at Web scale.

Taking into account these considerations, we devised a relation discovery process that
combines various background knowledge sources with the goal of optimizing time-performance
and precision. As shown in Figure 3.4, the relation discovery starts from quick methods
that are likely to return good results, and continues with slower methods which are likely
to introduce a higher percentage of noise: (1) The process begins with string matching for
detecting already existing terms in the ontology. This will identify equivalence relations
between the new terms and the ontology elements. (2) Extracted elements that do not
exist in the base ontology are passed to a module that performs relation discovery by ex-
ploring WordNet’s synset hierarchy. (3) Terms that could not be incorporated by using
WordNet are passed to the next module which explores Semantic Web ontologies. (4) If no
relation is found, we resort to the slower and more noisy methods which explore the Web
itself through search engines’ APIs and lexical syntactic patterns [5]. In case no relation

22

is found at the final level, the extracted term is discarded or, optionally, forwarded for

manual check.

Background Knowledge

Lexical sw
DBs Ontologies

Extracted
Terms

Discard

String

Relation

Base
Ontology
Terms

Relation

Relation . m
Path "\ Changes

Figure 3.4: Finding Relations Between New Terms and The Base Ontology in Evolva

23

Part 4

Pilot Study

We are applying our initial methods for information discovery and data validation on the
KMi portal data to evolve the underlying AKT ontology. We use Text20nto [6] to extract
information from the KMi Planet News web-pages'. We then perform string matching
between the extracted concepts and the current KMi ontology, based on the Jaro distance
metric [7] algorithm. We are currently testing the potential use of WordNet [9] and online
ontologies to find possible relationships between the newly discovered terms and the base
ontology’s terms.

Next to experiments performed on information extraction, data validation and relation
discovery, we are in parallel implementing our framework’s components that we discuss
later in this part.

4.1 Scenario Description

The Knowledge Media Institute’s (KMi) Semantic Web portal is a typical example of an
ontology based information system. The portal provides access to various data sources
(e.g. staff and publication databases, news stories) by relying on an ontology that repre-
sents the academic domain, namely the AKT ontology. The ontology has been originally
built manually and is automatically populated by relying on a set of manually established
mapping rules [18].

However, apart from the population process, the evolution of this ontology was per-
formed entirely manually. Indeed, as in this scenario ontology population is bound by strict
and limited mapping expressions, when a new type of term (i.e. not covered by the map-
ping rules) is extracted, the intervention of the ontology administrator is required to modify
the mappings. Moreover, the ontology schema can only be updated by the administrator.
Finally, with no mechanism to support recording and managing changes, it is difficult to
maintain a proper versioning of the ontology. Therefore, as this manual evolution of the

"http://news kmi.open.ac.uk

24

Extracted Relevant Average
Concepts Concepts Confidence
Exact 26 26 0.0353
Matching
Close 37 37 0.0253
Matching
New Con- | 474 97 0.0218
cepts
Overall 537 160 0.0227

Table 4.1: Text20nto Evaluation on 20 KMi News Articles

ontology could not follow the changes in the underlying data (which happen on a daily
basis), the ontology was finally left outdated.

4.2 Information Extraction

First we discuss a manual evaluation of Text20nto performing information extraction on a
small set of KMi’s news articles. This experiment was performed manually to get an insight
information about the capabilities of this tool. We select a 20 random news articles, and
run Text20nto to extract concepts, instances and relations. In section 4.3 we show how
the data validation component takes care of evaluating the information extracted from all
the corpus using an automated process.

The first evaluation of Text20nto is about pointing out extracted concepts that are
exactly matching concepts in the KMi ontology, closely matching or newly discovered
concepts not available in the KMi ontology. Then we check if the newly extracted concepts
are relevant to KMi’s domain, and whether there’s a correlation between the degree of
matching, relevance and the confidence value generated by Text20nto. The results are
depicted in Table 4.1.

The confidence of extraction assigned by Text20nto is taken into consideration to
check if there is a correlation between the confidence, and the matching done with the
KMi ontology. The confidence of concepts is the normalized value of the TFIDF between
[0..1], reflecting the probability of how the concept extraction is confident with respect to
the domain.

Based on the numbers in the table, the precision of Text20nto is 29.8%. The average
confidences are relatively close to each other, probably due to the small number of docu-
ments in the corpus, making the relative TFIDF measures not very accurate relatively to
the KMi domain.

It is worth to note that the relevance of the concepts is directly related, but not limited

25

SubClassOf Relation Number of | Relevant
Relations
ExactMatch«— CloseMatch 7 1
ExactMatch—NewConcepts 21

Table 4.2: Concepts Relevance Based on SubClassOf Relation with Exact Matchings

to the domain of the ontology, application layer features i.e. the usage, tasks fulfilled and
functionalities of the ontology, and finally to the degree of topic coverage in a domain.

Another test performed is the evaluation of the “subClassOf” relation between the exact
matching and the other extracted concepts. The “subClassOf” relation is also generated
by Text20nto. The idea behind this is to test the possibility of validating new and closely
matching concepts out of their “subClassOf” relation with exactly matching concepts. The
results are displayed in Table 4.2. We can deduce that they are not very promising, and
that we have to rely on other techniques to decide on the relevance of new discovered
concepts.

Concluding Text20nto’s manual evalution of the extraction performed on 20 news
articles:

— Information extracted from unstructured sources contain a certain amount of noise.

— Determining the relevance of extracted terms to the domain is not an isolated pro-
cess. However, various issues should be taken into consideration such as the ontology
functionality and domain coverage.

4.3 Concepts Extracted Vs. Base Ontology Concepts

After the manual evaluation of information extraction on a small number of documents, we
performed the extraction of concepts from all the KMi news articles corpus. At the time
of experiment, the corpus includes 986 KMi news articles. They have been extracted from
the web using a web content downloader tool called httrack?. We have sequentially batch
processed 40 news articles, as Text20nto could not handle all the corpus at one time.
The concepts are extracted based on the Term Frequency Inverse Document Frequency
(TFIDF) algorithm. A total of 4979 concepts are extracted.

The string matching process automatically analyzes the output of Text20nto concept
extraction based on the Jaro distance metric string similarity with a 0.92 threshold. The
Jaro distance metric similarity is based on the number and positions of the characters
in common between two strings. This string similarity technique performs well on short
strings [7].

2http:/ /www.httrack.com/

26

The comparison is performed against the base ontology concepts. Results show that
out of 256 concepts in the base ontology, 50 concepts exactly match and 22 concepts are
closely matching (with a similarity between 0.92 and 1) with the extracted concepts. This
leaves us with 4907 concepts newly discovered by Text20nto. Results are visualized in
Figure 4.1.

In the coming section we present our experiment for finding the links between the new
discovered concept, and the base ontology concepts.

Exact Match

2 Letter
Words

New Concepts Congepts _
Extracted Close Only in KMi
Match Ontology

Figure 4.1: Extracted Concepts Compared to the Base Ontology

4.4 Relation Discovery Experiment

We performed an experimental evaluation of the current implementation of the relation
discovery module on the data sets provided by the KMi scenario®. Our goal was to answer
three main questions. First, we wanted to get an insight into the efficiency, in particular in
terms of precision, of the relation discovery relying on our two main background knowledge
sources: WordNet and online ontologies. Second, we wished to understand the main reasons
behind the incorrect relations, leading to ways of identifying these automatically. Tackling
these issues would further increase the precision of the identified relations and bring us
closer to a full automation of this task. Finally, as a preparation for implementing Evolva’s
algorithm for performing ontology changes, we also wanted to identify a few typical cases
of relations to integrate into the base ontology.

The WordNet based relation discovery makes use of the Wu and Palmer similarity [39]

3Major parts of this section will appear in [41]

27

for identifying the best similarity measure between the two terms. As per Figure 4.2 This
measure is computed according to the following formula:

Sim(C1,C2) = yaraaesns

where N1 is the number of nodes on the path from C1 to C3 (the least common superconcept
of C1 and C2), N2 is the number of nodes between C2 and C3, and N3 is the number of
nodes on the path from C3 to the root [39]. For those terms that are most closely related
to each other, we derive a subsumption relation by exploring WordNet’s hierarchy using a
functionality built into its Java library*. This will result in a relation between a term, as
well as an inference path which lead to its discovery.

— ROOT

/

N3

Figure 4.2: The Wu and Palmer Concept Similarity Measure

The terms that could not be related to the base ontology are forwarded to the next
module which makes use of online ontologies. For this component, we rely on the Scarlet
relation discovery engine®. Scarlet [28] automatically selects and explores online ontologies
to discover relations between two given concepts. For example, when relating two concepts
labeled Researcher and AcademicStaff, Scarlet 1) identifies (at run-time) online ontologies
that can provide information about how these two concepts inter-relate and then 2) com-
bines this information to infer their relation. [28] describes two increasingly sophisticated
strategies to identify and to exploit online ontologies for relation discovery. Hereby, we rely
on the first strategy that derives a relation between two concepts if this relation is defined
within a single online ontology, e.g., stating that Researcher T AcademicStaff. Besides

“http://jwordnet.sourceforge.net/
Shttp://scarlet.open.ac.uk/

28

Extracted Ontology | Relation Relation
Term Concept Path
Contact Person C contact C representative C negotiator
CcommunicatorC person
Business Partnership C business C partnership
Child Person C child C person

Table 4.3: Examples of Relations Derived by Using WordNet

subsumption relations, Scarlet is also able to identify disjoint and named relations. All
relations are obtained by using derivation rules which explore not only direct relations but
also relations deduced by applying subsumption reasoning within a given ontology. For
example, when matching two concepts labeled Drinking Water and tap_water, appropriate
anchor terms are discovered in the TAP ontology and the following subsumption chain in
the external ontology is used to deduce a subsumption relation: DrinkingWater T Flat-
DrinkingWater © Tap Water. Note, that as in the case of WordNet, the derived relations
are accompanied by a path of inferences that lead to them.

4.4.1 Experimental Data

We relied on randomly selected 20 documents from KMi’s news repository as a source for
potentially new information. Text20nto’s extraction algorithm [6] discovered 520 terms
from these texts.

As already mentioned, the base ontology which we wish to evolve (i.e. KMi’s ontology)
currently contains 256 concepts, although it has not been updated for well over one year,
since April 2007. By using the Jaro matcher we identified that 21 of the extracted terms
have exact correspondences within the base ontology and that 7 are closely related to some
concepts (i.e. their similarity coefficient is above the threshold of 0.92).

4.4.2 Evaluation of the WordNet based Relation Discovery

Out of the 492 remaining new terms, 162 have been related to concepts of the ontology
thanks to the WordNet based relation discovery module. Some of these relations were
duplicated as they related the same pair of term and concept through the relation of
different synsets. For evaluation purposes, we eliminated duplicate relations and obtained
413 distinct relations (see examples in Table 4.3).

We evaluated a sample of randomly selected 205 relations (i.e. half of the total) in three
parallel evaluations. We identified those relations which are considered correct or false, as
well as those for which a correctness value could not be decided on (“Don’t know”). Results
are shown in Table 4.4. We computed a precision value for each evaluator, however, because

29

Evaluator 1 | Evaluator 2 | Evaluator 3 | Agreed by
all
Correct 106 137 132 76
False 96 53 73 26
Don’t 2 15 0 0
know
Precision | 53 % 73 % 65 % 75 %

Table 4.4: Evaluation Results for the Relations Derived from WordNet.

there was a considerable variation between these, we decided to also compute a precision
value on the sample on which they all agreed. Even though, because of the rather high
disagreement level between evaluators (more than 50%), we cannot draw a generally valid
conclusion from these values. Nevertheless, they already give us an indication that, even
in the worst case scenario, more than half of the obtained relations would be correct.
Moreover, this experiment helped us to identify typical incorrect relations that could be
filtered out automatically. These will be discussed in Section 4.4.4.

4.4.3 FEvaluation Results for Scarlet

The Scarlet based relation discovery processed the 327 terms for which no relation has been
found in WordNet. It identified 786 relations of different types (subsumption, disjointness,
named relations) for 68 of these terms (see some examples in Table 4.5.). Some of these
relations were duplicates, as the same relation can often be derived from several online
ontologies. Duplicate elimination lead to 478 distinct relations.

For the evaluation, we randomly selected 240 of the distinct relations (i.e. 50% of
them). They were then evaluated in the same setting as the WordNet-based relations.

No. | Extracted | Ontology Relation Relation
Term Concept Path
1 Funding Grant cC funding C grant
2 Region Event occurredIn region C place «—occurredIn- event
3 Hour Duration C hour C duration
4 Broker Person isOccupationOf broker -isOccupationOf— person
5 Lecturer Book editor lecturer C academicStaff C employee
C person«editor-book
6 Innovation Event C innovation C activity C event

Table 4.5: Examples of Relations Discovered Using Scarlet

30

Evaluator 1 | Evaluator 2 | Evaluator 3 | Agreed by
all
Correct 118 126 81 62
False 96 56 57 17
Don’t 11 47 102 8
know
Precision | 56 % 70 % 59 % 79 %

Table 4.6: Evaluation Results for the Relations Derived with Scarlet

Our results are shown in Table 4.6, where, as in the case of the WordNet-based relations,
precision values were computed both individually and for the jointly agreed relations. These
values were in the same ranges as for WordNet. One particular issue we faced here was
the evaluation of the named relations. These proved difficult because the names of the
relations did not always make their meanings clear. Different evaluators provided different
interpretations for these and thus increased the disagreement levels. Therefore, again,
we cannot provide a definitive conclusion of the performance of this particular algorithm.
Nevertheless, each evaluator identified more correct than incorrect relations.

4.4.4 Error Analysis

One of the main goals of our experiment was to identify typical errors and to envisage ways
to avoid them. We hereby describe some of our observations.

As already mentioned, in addition to the actual relation discovered between a new term
and an ontology concept, our method also provides the path that lead to this relation, either
in the WordNet synset hierarchy or in the external ontology in the case of Scarlet. Related
to that, a straightforward observation was that there seem to be a correlation between
the length of this path and the correctness of the relation, i.e. relations derived form
longer paths are more likely to be incorrect. To verify this intuition, we inspected groups
of relations with different path lengths and for each computed the percentage of correct,
false, un-ranked relations, as well as the relations on which an agreement was not reached.
These results are shown in Table 4.7. As expected, we observe that the percentage of correct
relations decreases for relations with longer paths (although, a similar observation cannot
be derived for the incorrect relations). We also note that the percentages of relations
which were not ranked and of those on which no agreement was reached are higher for
relations established through a longer path. This indicates that relations generated from
longer paths are more difficult to interpret, and so, may be less suitable for automatic
integration.

Another observation was that several relations were derived for the Thing concept (e.g.
Lecturer © Thing). While these relations cannot be considered incorrect, they are of

31

Relation True False Don’t No agree-
Path Know ment
Length

1 33 % 10 % 0 % 58 %

2 26 % 8 % 4 % 64 %

3 30 % 5 % 5 % 63 %

4 23 % 10 % 2% 67 %

) 20 % 3% 9% 69 %

Table 4.7: Correlation Between the Length of the Path and the Correctness of a Relation

little relevance for the domain ontology, as they would not contribute in making it evolve
in a useful way. Therefore, they should simply be discarded. Similarly, relations that
contained in their path abstract concepts such as Event, Individual or Resource tended
to be incorrect.

The WordNet experiment helped identifying some of the matching problems we need
to handle. Incorrect matching examples in WordNet are listed in table 4.8, which opened
additional questions we need to investigate:

— How to determine the context of terms occurring in the corpus? Keeping the link be-
tween the extracted term and its corresponding document, with the analysis of other
terms in the document could be useful in order to perform word sense disambiguation.

— How to determine the context of terms in the base ontology?
— How to match the term to its right sense in WordNet?

— How to solve the matching of compound extracted term? i.e. how to prevent the
matching of “area chart” with “country”, due to wrongly anchoring “area chart” to
the “area” term in WordNet, which has a relationship path with “country”? We
currently have a partial solution to this issue by matching only terms that exist in
WordNet, without breaking compound terms.

Finally, during the evaluation we also identified a set of relations to concepts that are
not relevant for the domain (e.g. death, doubt). While they sometimes lead to correct
relations (e.g. Death T FEwvent), these were rather irrelevant for the domain and thus
should be avoided. We concluded that it would be beneficial to include a filtering step that
eliminates, prior to the relation discovery step, those terms which are less relevant for the
base ontology.

32

New Con- | Existing Wu & | Relationship Path | Problem
cept Concept Palmer Based on WordNet Source
Similarity
actor grant 0.941 actor J grant (Gary Grant) | Wrong sense
area chart country 1 area chart = country Wrong anchor-
ing
system organization | 1 system = organization Wrong sense

Table 4.8: Bad Examples of WordNet Relationship Paths

4.5 Observations on Integrating Relations into the Base On-
tology

A particularity of the use of Scarlet is that different relations are derived from different
online ontologies, reflecting various perspectives and subscribing to different design deci-
sions.

One side effect of exploring multiple knowledge sources is that the derived knowledge is
sometimes redundant. Duplicates often appear when two or more ontologies state the same
relation between two concepts. These are easy to eliminate for subsumption and disjoint
relations, but become non-trivial for named relations.

Another side effect is that we can derive contradictory relations between the same pair
of concepts originating from different ontologies. For example, between Process and Event
we found three different relations: “disjoint”, “subClassOf” and “superClassOf”. Such a
case is a clear indication that at least one of the relations should be discarded, as they
cannot be all integrated into the ontology.

As we mentioned previously, both our methods provide both a relation and an inference
path that lead to its derivation. This makes the integration with the base ontology easier
as more information is available.

An interesting situation arises when a part of the path supporting the relation contra-
dicts the base ontology. For example, the second relation in the path relating Innovation
to Fvent, Row 6 of Table 4.5, contradicts the base ontology where Fvent and Activity are
siblings. This is a nice illustration of how the base ontology can be used as a context for
checking the validity of a relation. Indeed, we could envision a mechanism that increases
the confidence value for those paths which have a high correlation with the ontology (i.e.
when they “agree” at least on some parts).

In the process of matching a path to an ontology, we can encounter situations where
some elements of the path only have a partial syntactic match with the labels of some
ontology concepts. Referring back to Row 5 of Table 4.5, some of the terms in the relation
path connecting Lecturer to Book partially map to labels in the subsumption hierarchy of

33

the base ontology:

LecturerInAcademia = AcademicStaf f Member C
Higher EducationalOrganization Employee C Educational Employee C
Employee C Af filiated Person C Person

While our Jaro based matcher could not identify a match between Lecturer and LecturerInAcademia,
this association can be done by taking into account the discovered path and the base on-
tology, therefore avoiding the addition of already existing concepts, and giving further
indications on the way to integrate the discovered relations.
A final interesting observation relates to the appropriate abstraction level where a
named relation should be added. We listed in Row 5 of Table 4.5 a relation path where
Lecturer inherits a named relation to Book from its superclass, Person. Because Person
also exists in the base ontology, we think that it is more appropriate to add the relation to
this concept rather than to the more specific concept.

4.6 Experiment Conclusion

Our relation discovery experiments using WordNet and Scarlet helped identifying various
possible ways in which the overall quality of the process can be improved. First, it became
evident that relations established with abstract concepts or concepts that are poorly related
to the base ontology have a low relevance. We could avoid deriving such relations in the first
place by simply maintaining a list of common abstract concepts (e.g. Thing, Resource)
that should be avoided. Another approach would be to check the relevance of the terms
with respect to the ontology, by measuring their co-occurence in Web documents with
concepts from the base ontology.

In addition, the observation of the result of the relation discovery process can lead to
the design of a number of heuristic-based methods to improve the general quality of the
output. For example, we observed a correlation between the length of the path from which
a relation was derived and its quality. Note, however, that more in-depth analysis is needed
to verify such hypothesis.

Finally, and most interestingly, the base ontology itself can be used for validating the
correctness of a relation. Indeed, an overlap between the statements in the path and the
base ontology is an indication that the relation is likely to be correct, and, inversely, if
contradictions exist between the path and the ontology, the relation should be discarded.
We have also shown cases where during the integration of a path in the ontology, some
concepts can be considered equivalent even if their labels only partially match at a syntactic
level.

34

4.7 System Implementation

We are implementing our framework in Java using the Eclipse open development platform®.
We have so far partially covered information discovery, data validation, and relation dis-
covery in the ontological changes components. At a glance, the current pilot system im-
plementation targets the shaded nodes of Evolva’s framework in Figure 4.3. We are not
currently focusing on the graphical user interface part as we are planning to integrate our
system as a plugin in the NeOn toolkit”.

"""""""""" ! / Ontological
Q =1/0 Data

Changes

/ Information \ 4 Data N

= Processes
___________________ Evolved
Discovery Validation
Un- Qc/
structured IREVD HP»< Transform-
Data

Data

External Relation

Ontologies,

Translation .
Recording

Changes

Admin
Control

Databases
Base

Ontology

Evolution

\ Management /

Figure 4.3: Pilot System Current Status Covering Shaded Nodes

4.7.1 String Matching

The implementation started by performing Jaro distance metric string similarity between
the list of extracted terms by Text2Onto, and the list of concepts in the KMi ontology. At
this stage we used the stand alone application of Text20nto to process the news documents,
and we got the output in an OWL ontology file. Then we performed text parsing for
identifying the concepts of Text20nto output file. This automated string matching helped
to quickly identify the new terms extracted by the Text20nto. In Figure 4.4 we show a
sample output of processing the list of concepts occurring in 20 news documents in our
system.

Shttp://www.eclipse.org
"http://neon-toolkit.org

35

[3_\ Problems (@ Javadoc (@ Declaration (E Console &3 ‘?,):'Searchw

<terminated> GradualMatching [Java Application] {System/Library/Frameworks,
organisation --= organizaotion @.0444444444444443

software developer --> software-developer 8.9629629629629629
month --» month 1.8

organization --= organization 1.8

class --» class 1.8

project --» project 1.8

Exact Match: 25

Close Match: 7

New Concepts: 497

Figure 4.4: Screenshot: String Matching Results Example

4.7.2 Text20nto Integration

In order to present one stand-alone application, we integrated Text20nto API in our frame-
work. This gave us more flexibility at the level of processing the output of Text20nto, as
now we are able to directly get the concepts and instances or other extracted relations in
separate lists. This functionality enabled us to read the corpus documents directly from a
directory as shown in Figure 4.5, process the documents, and read the extracted terms for
our gradual matching functionality.

We faced some difficulties during the integration, mainly due to compatibility issues
between the GATE? libraries and the Eclipse environment, as well as other 3rd parties’
libraries.

|[L Problems (@ Javadoc (@) Declaration (E Console &3 Q;'Searchw |]

GradualMatching [Java Application] /System/Library/Frameworks/JavaVM.framework/Versions/1.5.0/Home/bin/java (Jun 19, 2
Reading from corpus directory: file:/Users/fz?7/Documents/PhD/workspace/matching/corpus/kminews/

The system will perform a String match between the extracted concepts, and KMi's concepts.
Non maotching terms are passed to WordMet matching if activated by user.

Figure 4.5: Screenshot: Reading Corpus Directory

4.7.3 'WordNet Relationship Path

Then we have integrated WordNet for discovering possible relations between new concepts
discovered from the previous string matching process, and the list of the KMi ontology
concepts. As mentioned previously, the Wu and Palmer similarity formula is used, and we
only select the best relationships between the terms. The user is asked if he/she would like
to use WordNet matching as in Figure 4.6. The output of WordNet matching is sent to
a text file for further analysis. The analysis enabled us to spot anchoring and duplication

Shttp://gate.ac.uk

36

problems, that after solving, we were able to reduce the 3527 WordNet similarities we
initially got, to 328 similarities. Below are two examples showing the relationship details
between first blog and journal, and second between presentation and activity:

blog --> journal - Similarity: 0.9333333333333333

[Words: web_log, blog -- (a shared on-line journal where people can post
diary entries about their personal experiences and hobbies)]
[PointerType: hypernym]

[Words: diary, journal -- (a daily written record of (usually personal)
experiences and observations)]

presentation --> activity - Similarity: 0.6666666666666666

[Words: presentation -- (the activity of formally presenting something
(as a prize or reward); "she gave the trophy but he made the
presentation")] [PointerType: hypernym]

[Words: ceremony -- (the proper or conventional behavior on some solemn
occasion; "an inaugural ceremony")] [PointerType: hypernym]
[Words: activity -- (any specific activity; "they avoided all

recreational activity")]

|[3_ Problems (@ Javadoc (@ Declaration (E Console &3 5 Searchw (=

GradualMatching [lava Application] /System/Library/Frameworks /JavaVM.framework /Versions/1.5.0/Home/bin/java (]
The system will perform a String match between the extracted concepts, and KMi's concepts.
Non matching terms are possed to WordNet motching if activated by user.

Use WordNet Matching? (y/n):
Figure 4.6: Screenshot: Activating WordNet Matching

The Wu and Palmer similarity is good for measuring similarities, but sometimes returns
similar terms which do not fall on a direct path. This would make performing ontology
changes tricky and not a straight forward process. Thus we put on our implementation
schedule the option to resolve only direct relationship paths.

4.7.4 Scarlet Relation Discovery Integration

Scarlet [28] relies on the WATSON |[8] libraries for accessing online ontologies. Figure 4.7
illustrates the strategy used with an example where three ontologies are discovered (Oj,
02, O3) containing the concepts A’ and B’ corresponding to A and B. The first ontology
contains no relation between the anchor concepts, while the other two ontologies declare a
subsumption relation. For a given ontology (O;) the following derivation rules are used:

— if A} = B! then derive A — B;

37

if A, C B/ then derive A £, B;
— if A} 3 B/ then derive A = B;
— if A} L B! then derive A =, B;

if R(A;, B]) then derive A £, B.

These rules explore not only direct relations but also relations deduced by applying
subsumption reasoning with a given ontology.

Online Ontologies

A B

Figure 4.7: Relation Discovery with Scarlet

In Evolva, only the list of terms that are not linked to the base ontology through a
WordNet relation are passed for checking using Scarlet. Two relation examples discovered
through Scarlet

Relation 1:

PERSON --R_TO-http://travel.org/russia#has_birthplace--> TOWN
Path:

http://travel.org/russia#TOWN--subClass0f-->
http://...#political_region <--R_TO-http://...#has_birthplace--
http://travel.org/russia#PERSON

Relation 2:

MANAGER --subClass--> PERSON

Path:
http://www.aifb.uni-karlsruhe.de/ontology#MANAGER--subClass0f-->
http://www.aifb.uni-karlsruhe.de/ontology#Employee--subClass0f-->
http://www.aifb.uni-karlsruhe.de/ontology#PERSON

38

After implementation, we realized that Scarlet consumes a lot of time, mainly due to the
complete path discovery of relations. We decided to later implement a method for batch
processing related terms first, without checking all the relation path, and then extract the
path of terms that we are sure they are related.

39

Part 5

Discussion and Future Work

Ontology evolution is a tedious and time consuming task, especially at the level of intro-
ducing new knowledge to the ontology. Most of current ontology evolution approaches
rely on the ontology curator’s expertise to come up with the right integration decisions.
Our proposed framework, Evolva, is a solution towards tremendously decreasing or even
eliminating user input during ontology evolution. Our work in progress shows preliminary
results on information discovery, data validation, as well as relation discovery for per-
forming ontological changes. Our shortcoming plan is to enhance our process of relation
discovery in terms of time and precision through:

— Implementation of a filter to exclude very generic terms, not relevant to our ontology.

— Extracting only subsumption relations from WordNet without the use of the Wu and
Palmer similarity.

— Using the Web to check the degree of relatedness between the extracted terms and
the base ontology entities. This will serve as an automated checker for the relevance
of terms with respect to the ontology.

— Try different combinations of background knowledge such as a parallel combination
instead of linear as per our experiment.

— In terms of time performance, we will implement a batch processing method in Scar-
let, that will highly improve computational time.

Then our plan is to proceed with our gradual matching technique by exploiting the
whole Web as a source of background knowledge. Then we tackle the issue of performing
the changes dynamically to the base ontology, and finally focus on the component for
validating and managing the evolution. After the implementation phase, we plan to test
Evolva in other environments such as the UN’s Food and Agriculture Organization (FAO)*

"http://www.fao.org

40

domain. We will then work on setting the basis of evaluation procedures, for example by
testing the accuracy and degree of coverage of our system by comparing it to an ontology
engineer’s performance. This will enable further extensions and improvements to Evolva.

Going back to our list of requirements, we discuss in this part how our work is oriented
to tackle each point in the list:

R1. The ontology should remain consistent during evolution, through resolving for exam-
ple time related and duplication inconsistencies.

Evolva’s evolution validation component includes a consistency, temporal related and du-
plication checkers for spotting evolution anomalies. However we acknowledge the fact that
not all consistencies could be automatically resolved, but we are aiming at least to spot
and return them to the user.

R2. Relevant and validated information should be extracted from various types of data
sources: structured, semi-structured and unstructured.

The information discovery in Evolva is designed to extract information from various data
sources keeping in mind that each source, with a differing level of structure, should be
handled differently. Handling varies both at the level of discovery as well as at the validation
level. We are planning to integrate a trust level for our data and background knowledge
sources that could help in the data validation process.

R3. For a fast adaptation to changes, ontology evolution should occur with the least or
even without user input i.e. dynamic.

Evolva resolves the relationship paths between new terms to integrate in the base ontol-
ogy through exploiting various background knowledge sources. This is one of the main
contributions of our research, and we hope that this will be a step towards performing
dynamic ontology evolution. The performance of changes is handled at the ontological
changes component level.

R4. Changes should be recorded and propagated to the ontology dependent components,
and R5. Users should have a degree of control over the evolution.

41

Ontology changes will be recorded and propagated by Evolva in its evolution management
component. Requirement R5 is tackled in the evolution management component as well,
by giving a degree of control for the users through the administrator control panel.

R6. Ontology evolution should be as domain independent as possible.

We are aware how challenging is the task of having a domain independent ontology evolu-
tion system. However, using a generic approach for harvesting knowledge, we are optimistic
about Evolva performing well in different domains. Towards the end of our research, as
mentioned in our plan, we will test the performance of Evolva in the FAO domain, and
study the level of domain independence.

42

References

1]

[9]

ANGELETOU, S., SABOU, M., SPECIA, L., AND MoTTA, E. Bridging the gap be-
tween folksonomies and the semantic web: An experience report. Proc. of the ESWC
Workshop on Bridging the Gap between Semantic Web and Web 2.0 2 (2007).

BAKER, C. F., FILLMORE, C. J., AND LOWE, J. B. The berkeley framenet project.
Proceedings of the COLING-ACL (1998).

BLOEHDORN, S., HAASE, P., SURE, Y., AND VOELKER, J. Ontology Evolution. John
Wiley & Sons, June 2006, pp. 51-70.

CERAVOLO, P., CORALLO, A., ELiA, G., AND ZILLI, A. Managing ontology evolu-
tion via relational constraints. Proceedings of the Fighth International Conference on
Knowledge-Based Intelligent Information & Engineering Systems (KES’04), Welling-
ton, New Zealand, September (2004).

CiMIANO, P., HANDSCHUH, S., AND STAAB, S. Towards the self-annotating web.
Proceedings of the 13th international conference on World Wide Web (2004), 462—
471.

CiMIANO, P., AND VOLKER, J. Text2onto - a framework for ontology learning and
data-driven change discovery. Proceedings of the 10th International Conference on
Applications of Natural Language to Information Systems (NLDB 2005), Alicante
(2005), 15-17.

CoHEN, W. W., RAVIKUMAR, P., AND FIENBERG, S. E. A comparison of string
distance metrics for name-matching tasks. Proceedings of the IJCAI-2003 Workshop
on Information Integration on the Web (IIWeb-03) (2003).

D’AQUIN, M., BALDASSARRE, C., GRIDINOC, L., SABOU, M., ANGELETOU, S., AND

MorTA, E. Watson: Supporting next generation semantic web applications. Proc. of
WWW /Internet conference (2007).

FeLLBAUM, C. Wordnet: An FElectronic Lexical Database. MIT Press, 1998.

43

[10]

[11]

[12]

[13]
[14]

[19]

[20]

[21]

[22]

HAASE, P., AND SToJaNovic, L. Consistent evolution of owl ontologies. Proceedings
of the Second European Semantic Web Conference, Heraklion, Greece, 2005 (2005),
182-197.

HaAasg, P., AND SURE, Y. D3. 1.1. b state of the art on ontology evolution. SEKT
Deliverable (2004).

HEFLIN, J. Towards the Semantic Web: Knowledge Representation in a Dynamic,
Distributed Environment. PhD thesis, University of Maryland, College Park, 2001.

HEFLIN, J., AND HENDLER, J. A. Dynamic ontologies on the web. pp. 443-449.

KLEIN, M. Change Management for Distributed Ontologies. PhD thesis, Vrije Uni-
versiteit in Amsterdam, 2004.

KreEIN, M., Kirvakov, A., OGNYANOV, D., AND FENSEL, D. Finding and char-
acterizing changes in ontologies. Conceptual Modeling-ER 2002: 21st International
Conference on Conceptual Modeling, Tampere, Finland (2002).

KLEIN, M., AND NoOY, N. F. A component-based framework for ontology evolution.
Ontologies and Distributed Systems (2003).

LAERA, L., HANDSCHUH, S., ZEMANEK, J., VOLKEL, M., BENDAOUD, R., HACENE,
M. R., ToussAINT, Y., DELECROIX, B., AND NApPoOLI, A. D2. 3.8 v2 report and
prototype of dynamics in the ontology lifecycle.

LE1, Y., SaBou, M., LoPEz, V., ZHU, J., UREN, V., AND MOTTA, E. An infras-
tructure for acquiring high quality semantic metadata. Proceedings of the 3rd European
Semantic Web Conference (2006).

LUKE, S., SPECTOR, L., RAGER, D., AND HANDLER, J. Ontology-based web agents.
W. L. Johnson and B. Hayes-Roth, Eds., ACM Press, pp. 59-68.

MAEDCHE, A., MoTIK, B., STOJANOVIC, L., STUDER, R., AND VOLZ, R. Man-
aging multiple ontologies and ontology evolution in ontologging. Proceedings of the
Conference on Intelligent Information Processing, World Computer Congress (2002).

MAYNARD, D., PETERS, W., D’AQUIN, M., AND SABOU, M. Change management

for metadata evolution. International Workshop on Ontology Dynamics (IWOD-07)
(2007).

NOVACEK, V., LAERA, L., AND HANDSCHUH, S. Semi-automatic integration of
learned ontologies into a collaborative framework. International Workshop on Ontol-
ogy Dynamics (IWOD-07) (2007).

44

23]

[32]

33]

Noy, N. F., CHuGH, A., Liu, W., AND MUSEN, M. A. A framework for ontology
evolution in collaborative environments. Proceedings of the 5th Int. Semantic Web

Conference (ISWC?06). Athens, Georgia, USA (2006), 544-558.

Novy, N. F., AND KLEIN, M. Ontology evolution: Not the same as schema evolution.
Knowledge and Information Systems 6 (2004), 428—-440.

Noy, N. F., KUNNATUR, S., KLEIN, M., AND MUSEN, M. A. Tracking changes

during ontology evolution. Proceedings of the Third International Conference on the
Semantic Web (ISWC’04) (2004).

Ot1TENS, K., AND GLIZE, P. A multi-agent system for building dynamic ontolo-
gies. Proceedings of the 6th international joint conference on Autonomous agents and
multiagent systems (2007).

RoGgozAN, D., AND PAQUETTE, G. Managing ontology changes on the semantic web.
Proceedings of the International Conference on Web Intelligence (WI’05) (2005), 430—
433.

SABoU, M., D’AQUIN, M., AND MoTTA, E. Exploring the semantic web as back-
ground knowledge for ontology matching. Journal on Data Semantics (2008).

SIORPAES, K. Lightweight community-driven ontology evolution. Doctoral Symposium
of the ISWC 4825 (2007), 951.

SToJANOVIC, L. Methods and Tools for Ontology Evolution. PhD thesis, FZI - Re-
search Center for Information Technologies at the University of Karslruhe, 2004.

SToJANOVIC, L., MAEDCHE, A., MoTIK, B., AND STOJANOVIC, N. User-driven

ontology evolution management. Proceedings of the 13th European Conference on
Knowledge Engineering and Knowledge Management EKAW (2002).

StoJaNovic, L., Stojanovic, N., AND HANDSCHUH, S. Evolution of the meta-
data in the ontology-based knowledge management systems. German Workshop on
Ezxperience Management (2002), 65-77.

TaLrLis, M., AND GIL, Y. Designing scripts to guide users in modifying knowledge-
based systems. Proceedings of the Sixteenth National Conference on Artificial Intelli-
gence (1999), 242-249.

TAaMMA, V., AND BENCH-CAPON, T. A conceptual model to facilitate knowledge
sharing in multi-agent systems. Proceedings of the OAS (2001), 69-76.

VELARDI, P., FABRIANI, P., AND MISSIKOFF, M. Using text processing techniques
to automatically enrich a domain ontology. Proceedings of the international conference
on Formal Ontology in Information Systems-Volume 2001 (2001), 270-284.

45

[36]

[40]
[41]

VOLKEL, M., AND GROZA, T. Semversion: An rdf-based ontology versioning system.
Proceedings of the IADIS International Conference WWW /Internet (ICWI 2006),
Murcia, Spain (2006).

Vorz, R., OBERLE, D., STAAB, S., AND MoTIK, B. Kaon server-a semantic web
management system. Alternate Track Proceedings of the Twelfth International World
Wide Web Conference, WWW2003, Budapest, Hungary (2003), 20—-24.

VRANDECIC, D., PINTO, H. S., SURE, Y., AND TEMPICH, C. The diligent knowledge
processes. Journal of Knowledge Management 9 (2005), 85-96.

Wu, Z., AND PALMER, M. Verb semantics and lexical selection. Proceedings of
the 32nd Annual Meeting of the Association for Computational Linguistics (1994),
133-138.

ZABLITH, F. Dynamic ontology evolution. ISWC' Doctoral Consortium (2008).

ZABLITH, F., SABOU, M., D’AQUIN, M., AND MoTTA, E. Using background knowl-
edge for ontology evolution. To appear in: Proceedings of the ISWC International
Workshop on Ontology Dynamics (IWOD) (2008).

46

