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ABSTRACT
With the daily increase of the amount of published informa-
tion, research in the area of text analytics is gaining more
visibility. Text processing for improving analytics is being
studied from different angles. In the literature, text depen-
dencies have been employed to perform various tasks. This
includes for example the identification of semantic relations
and sentiment analysis. We observe that while text depen-
dencies can boost text analytics, managing and preserving
such dependencies in text documents that spread across var-
ious corpora and contexts is a challenging task. We present
in this paper our work on linking text dependencies using
the Resource Description Framework (RDF) specification,
following the Stanford typed dependencies representation.
We contribute to the field by providing analysts the means
to query, extract, and reuse text dependencies for analytical
purposes. We highlight how this additional layer can be used
in the context of feedback analysis by applying a selection
of queries passed to a triple-store containing the generated
text dependencies graphs.

Categories and Subject Descriptors
E.1 [Data]: Data Structures—Graphs and networks; I.2.7
[Artificial Intelligence]: Natural Language Processing—
Text analysis; I.5.4 [Pattern Recognition]: Applications—
Text processing

General Terms
Performance

Keywords
Graph analysis, knowledge representation, linked data, per-
formance management, semantic web, text analytics

1. INTRODUCTION
Text analytics is one of the core tasks in mining insights
from the ever growing amount of text, especially online. For

example in marketing campaigns, analysts aim to convert
what consumers say about their products online into knowl-
edgeable facts. One of the major differences between text-
bases and other controlled data repositories (e.g. databases)
is that text is unstructured and does not follow a prede-
fined format for knowledge sharing and processing. There
are many challenges involved in text analytics, mainly due
to the unstructured nature of text that makes it hard to:
(1) query the text source in a standardized way to derive
insights, (2) trace the occurrence of textual terms and (3)
study the cause and effect dependencies among terms.

Natural language processing (NLP) research has come a long
way in performing various sophisticated tasks on text. Such
tasks include for example named entity recognition [8], de-
riving structures for question answering [5], part-of-speech
tagging [13] and word-sense disambiguation [10]. We present
in this paper our work on linking dependency relations in
text using the Resource Description Framework (RDF) spec-
ification [6], with the aim to improve text analytics. Depen-
dencies in text (i.e. grammatical relations) naturally exist
as a way to cognitively enable the reader to infer structural
meanings from text. We highlight how capturing and linking
such dependencies in RDF would provide a new analytical
dimension of the involved text. Our aim is to create an ad-
ditional analytical layer based on the linked dependencies
among text elements. We implement a dependency-to-RDF
translator that converts the Stanford typed dependency [4]
to a linked data ready graph. We employ this translator
to process comments aggregated from the evaluation of e-
Government services [9], and push the generated RDF to a
triple-store for analytical purposes and querying the aggre-
gated data.

The aim of this work is to create on top of disparate pieces
of text a layer that (1) connects the dots around the dif-
ferent textual elements, (2) can be queried and extended
when new text emerges, and (3) can be used to derive in-
sights around the flow of knowledge aggregated for example
from user feedback. This semantic layer will enable us to go
beyond syntactic analytics (e.g. the most frequently men-
tioned term), and to derive more in-depth information (e.g.
which entities in the text are the most semantically modi-
fied). The contribution of our approach is that we are pro-
viding a linked layer of raw text dependencies on top of text
corpora. We are preserving the provenance of all the text el-
ements through Unique Resource Identifiers (URIs), which



enables analysts to trace back exactly where the element
came from in the text. Furthermore, thanks to the graph
nature of RDF representations, additional analysis can be
adopted by linking auxiliary information (e.g. polarity) to
the specific elements in the graph of the text. In other words
we are preserving all text dependencies in RDF, and leaving
it to the analysts to process the text fragments as required
by the application context.

We present in Section2 related work in the field. Then we
discuss the linking process in Section 3, followed by a sce-
nario where we apply some query examples on the aggre-
gated text in Section 6. We finally conclude and discuss our
future work in Section 7.

2. RELATED WORK
Text processing for analytics is gaining more and more trac-
tion in various fields. Businesses and organizations are un-
derstanding the value of this exercise with the increase of
text and online discussions. Approaches are exploiting text
to perform various objectives.

Acknowledging that the unstructured nature of text can
be turned into a consumable body of knowledge, research
around extracting entity relationships out of text documents
has been ongoing for a while. For example existing work fo-
cused on creating ontologies from text documents to identify
concepts and their corresponding relations [3, 12, 15]. The
objective of such tools is mainly to build a representation
of a specific domain (i.e. an ontology), out of a corpus. In
other words, the aim is to identify the most accurate con-
cepts and their corresponding relations from text sources.
While this layer is a query compatible layer on top of text,
some of the analytics operations such as filtering statements
where opinions about an entity are expressed are not pos-
sible. This is due to the fact that most of such tools focus
on concept-to-concept relations, and often do not capture
descriptive statements that include for example adjectively
modified entities.

Text dependencies have been used to perform many text
processing tasks. For example it was used to identify polar-
ity and sentiment analysis in text sentences [14]. It was also
used to infer semantic relations among terms in text. For
example in OntoLearn [12] it was used to derive kind-of re-
lations between entities from term definitions. Others have
relied on dependency relations to derive inference rules from
text [7]. We observe that text analysts are mainly bound
by the functionalities and algorithms implemented by the
tools used. For example in tools where the focus is on senti-
ment analysis, the emphasis is on terms that affect polarity
(e.g. adjectives), with little focus on conceptual relations.
In other contexts, where the aim is to find conceptual rela-
tions around entities, adjectives that describe such entities
in text are probably dropped. However in some cases, text
analysts might require more flexibility in processing text,
guided by their analysis objectives. Simple objectives could
be for example to directly extract adjectives that are used
by product or service reviewers, combined with their depen-
dents mentioned in the text.

The aim of this work is to provide this flexibility by captur-
ing and linking text dependencies as they occur in the text,

and offer a query and inferencing enabled layer that merges
the different pieces of text. Such layer can be directly used
by analysts or tool developers with the aim to reuse text de-
pendencies in other contexts or tool development to support
text analytics.

3. LINKING PROCESS OVERVIEW
We highlight the main steps of the work in Figure 1. At a
high level, a piece of text is passed to the text processing
phase, where the part-of-speech (POS) and lexical parsers
modules generate the text dependencies that we describe in
further details next in the paper. The dependencies and
POS information are passed to the linking module, where
the links are created based on the dependency relations, and
all the text elements are preserved in RDF triples with ex-
plicitly defined identifiers. The triples are then pushed to a
triple-store to enable further processing and analytics appli-
cations.

POS Tagger Lexical
Parser

RDF 
Generator

Triple 
Store

Text

Analytics
Apps

In
pu

t
Te

xt
 

Pr
oc

es
sin

g
Li

nk
in

g
Pu

bl
ish

in
g/

Re
us

in
g

Figure 1: Overview of the Linking Process.

4. STANFORD TYPED DEPENDENCIES
We rely in our work on the Stanford NLP tools for pro-
cessing text [2, 11]. Stanford typed dependencies identify
grammatical relations among textual entities. The depen-
dency relations follow a hierarchy, and are binary relations
that include a governor (or head) and a dependent in the
form of depRelation(governor, dependent). Take for example
the following statement:

It is an efficient service.

it includes the following Stanford dependency relations:

nsubj(service, It) - nominal subject
cop(service, is) - copula
det(service, an) - determiner
amod(service, efficient) - adjectival modifier



The full list of relations can be found in [4]. This binary rep-
resentation is a good candidate for converting the relations
to RDF triples as we show later in the paper.

In addition to dependency relations, Stanford NLP tools
provide POS tagging features, through which the text en-
tities are tagged based on their POS [11]. For the previous
example, the entities are tagged as follows:

It: PRP - personal pronoun
is: VBZ - verb, 3rd person singular present
an: DT - determiner
efficient: JJ - adjective
service: NN - noun, singular

5. GENERATION OF DEPENDENCY
GRAPHS

In this part we present the methodology we followed to gen-
erate the RDF graphs of text dependencies. We first de-
scribe how the identifiers of text elements are generated;
then we present the graph model we adopted to link the
text dependencies; and later discuss the implementation of
the dependency-to-RDF translator.

5.1 Unique Resource Identifiers of Text Ele-
ments

In our work, we represent each entity (i.e. terms, sentences,
etc.) found in the text by a unique resource identifier (URI).
This will enable us to create dependency relations that link
unique terms in a text repository. The entities are linked
to a context that also has a well defined URI. For example
the term service has a URI and is linked through a relation
to the sentence (with a URI) that forms the context of the
term. In our design, we follow the below patterns for URI
creation of text elements:

Sentence URI: NameSpace:MD5(sentence)

Term URI: NameSpace:term/POS(term)/text(term)
/MD5(sentence)/ positionIndex(term)

Where MD5(sentence) is a function that returns the unique
MD5 hash of the sentence; the POS(term) is a function that
returns the part-of-speech tag of the term; the text(term) is
a function that returns the string of the term; and the posi-

tionIndex(term) returns the position of the term relative to
the sentence. Applying the URI patterns on the example we
highlighted before will generate the list of URIs presented
in Table 1.

5.2 Text Dependencies Graph Model
In order to translate the text entities into an RDF graph,
we create a two-layered ontology schema. At a high level,
we represent the schema of the Stanford dependencies (i.e.
POS and Dependency relations) in RDF. The schema also
includes the relations among the dependencies for improved
inferencing. This will enable for example to extract all en-
tities linked through a modifier relation, inferred from all
its sub-properties such as adjectival modifier or adverbial
modifier.

Table 1: URI Examples of a Sentence and its Terms
Entity URI
It is an effi-
cient service

NS:sentence/4c7aa81ba8fbcd3ad42996e
b6bac18dc

It NS:term/PRP/It/4c7aa81ba8fbcd3ad42
996eb6bac18dc 1

is NS:term/VBZ/is/4c7aa81ba8fbcd3ad42
996eb6bac18dc 2

an NS:term/DT/an/4c7aa81ba8fbcd3ad42
996eb6bac18dc 3

efficient NS:term/JJ/efficient/4c7aa81ba8fbcd3a
d42996eb6bac18dc 4

service NS:term/NN/service/4c7aa81ba8fbcd3a
d42996eb6bac18dc 5

We present in Figure 2 the model we created to link the enti-
ties in text sentence. We start from a text, or at a more ab-
stract level, a context. We have chosen this design to enable
the linking of analysis across various contexts. For example
product reviews of the same product can exist in various
websites, which are considered contexts in our design. This
representation will enable us to move from granular term
levels, going back to higher level contexts and vice versa.

Sentence

RDFS:hasDescription

Sentence text

DCT:hasPart
Term

STD:…

RD
FS

:s
ub

Cl
as

sO
f

STD:Dependent

STD:JJ

STD:VB

STD:NN

STD:CD

STD:auxiliary

RDFS:subPropertyOf

STD:passiveAuxiliary

RDFS:subPropertyOf

STD:copula

STD:modifier

STD:adjectivalModifier

RDFS:subPropertyOf

STD:quantifierModifier

STD:… (all other dependency relations)

Text/ 
context

DCT:hasPart

Term Label

RDFS:label

Figure 2: Text Dependencies RDF model.

From the text we move to the sentence level, which is linked
to its terms through a DCT:hasPart relation taken from the
Dublin Core terms vocabulary1. Links can be made down to
the level of the part-of-speech term type. Terms are related
through the generic Stanford dependency relation, which has
all its sub-properties explicitly captured. We highlight in
Figure 3 the dependency RDF graph generated of the ex-

1http://purl.org/dc/terms/

http://purl.org/dc/terms/
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Figure 3: Sentence Dependencies RDF Example.

ample sentence “it is an efficient service”.

5.3 Dependency-to-RDF Translator
We developed a dependency to RDF translator that takes a
sentence as input, and generates an RDF graph. We rely on
the Stanford NLP Lexical Parser tool [2] to parse the text, on
which we apply our translation patterns. We used the com-
bination of Jena for handling the creation of the model [1],
and Fuseki-TDB triple-store2 to handle serving the RDF
code. We describe how we handle the translation process in
Algorithm 1. Note that the InferenceModel function, which
enables inferencing on the model, is not required if the RDF
data will be pushed to a triple-store that includes an infer-
encing engine. However given that the Fuseki-TDB does not
provide inferencing functionalities by default, the other op-
tion was to apply inferencing using Jena on the model before
pushing it to the triple-store.

6. TEXT ANALYTICS SCENARIO
In order to preliminary show the value of this RDF layer on
top of text, we apply our work in the context of the analysis
of user feedback on e-government services. As part of the
I-Meet research project [9], we collected the feedback from
users around e-Government services. The questionnaire in-
cluded closed-ended and two open-ended questions. While
the analysis of the closed-ended questions was performed
from different perspectives, the analysis of the open-ended
questions was more challenging.

2http://jena.apache.org/documentation/serving_
data/

input : A string sentence, LexicalizedParser lp
output: RDF model r

run the lexicalized parser lp on the sentence to get the
list of dependency relations “relationsList”;
sURI ←GenerateURI(sentence);
for i← 0 to relationsList.size do

loop through the dependency relations and add the
triples to model r;
s←GenerateURI(Relation[i].governor);
p←GenerateURI(Relation[i]);
o←GenerateURI(Relation[i].dependent);
r.AddTriple(s, p, o);
r.AddTriple(sURI,RDFS : hasPart, s);
r.AddTriple(sURI,RDFS : hasPart, o);
/* Add triples to r related to the Stanford

dependency relations hierarchy and the

entity labels */;
InferenceModel(r) /* This function will

enable inferencing on the model */;

end
PushTotriple-store(r) /* The output model r is

then pushed to a triple-store */;

Algorithm 1: RDF generator.

http://jena.apache.org/documentation/serving_data/
http://jena.apache.org/documentation/serving_data/


We fed the 3,140 English written comments to our dependency-
to-RDF parser, and generated 174,862 RDF triples that
were pushed to a Fuseki-TDB triple-store. It is worth to
note that without inferencing, the number of triples gener-
ated was 77,322. When the InferenceModel functionality
is applied, Jena makes all inferencing statements as explicit
triples. Hence the number of triples will be lower if the RDF
is to be pushed to a triple-store with inferencing functional-
ities.

Sample Queries

With the text dependencies all represented in RDF and
pushed to a triple-store, it is now possible to query the data
to see how elements in the text interact with the aggregated
view on user comments.

SPARQL Query 1: What were the adjectives used by users
to describe their experience from the most frequent, to the
less frequent?

SELECT ?adjLabel (COUNT(?adjLabel) AS ?count)

WHERE

{

?adj <http://www.w3.org/2000/01/rdf-schema#sub

ClassOf> <http://linked.aub.edu.lb/term/JJ>.

?adj <http://www.w3.org/2000/01/rdf-schema

#label> ?adjLabel

}

GROUP BY ?adjLabel

ORDER BY DESC(?count)

Based on the comments received by users, we got the first
10 results highlighted in Table 2.

Table 2: SPARQL Query 1 Sample Results
?adjLabel ?Count
easy 220
good 97
quick 72
other 67
available 32
able 31
simple 31
great 30
convenient 29
essential 29

SPARQL Query 2: What were the “things” that users found
“easy”?

SELECT ?modifiedByEasy (COUNT(?modifiedByEasy) AS

?count)

WHERE

{

?adj <http://linked.aub.edu.lb/ontology/

dependency/prep> ?modified .

?adj <http://www.w3.org/2000/01/rdf-schema

#label> ?adjLabel.

?modified <http://www.w3.org/2000/01/rdf-schema

#label> ?modifiedByEasy

FILTER regex(?adjLabel, "^easy")

}

GROUP BY ?modifiedByEasy

ORDER BY DESC(?count)

Note that in this query we are querying the entities that
are dependent on “easy” through the prepositional modifier
(prep) dependency relation, which will indirectly include all
the prepositional sub-property relations. For example the
statement “easy to use” will have the following dependency
relation from the Stanford parser: perp to(easy, use). In
our RDF translator, all sub-properties have been explicitly
linked, which enabled us to run the query above. Part of
the results are given in Table 3.

Table 3: SPARQL Query 2 Sample Results
?modifiedByEasy ?Count
use 11
access 2
acess (typos from users) 2
me 2
time 2
cost 1
excess 1
layout 1
problems 1
saving 1

SPARQL Query 3: How is the term “Service” described by
users?

SELECT ?adjModifier (COUNT(?adjModifier) AS ?count)

WHERE

{

?x <http://www.w3.org/2000/01/rdf-schema#label>

?xLabel.

?z <http://www.w3.org/2000/01/rdf-schema#label>

?adjModifier.

?z <http://www.w3.org/2000/01/rdf-schema#sub

ClassOf> <http://linked.aub.edu.lb/term/JJ>.

{

?x <http://linked.aub.edu.lb/ontology/

dependency/dep> ?z

}

UNION

{

?z <http://linked.aub.edu.lb/ontology/

dependency/dep> ?x

}

FILTER regex(?xLabel, "^service")

}

GROUP BY ?adjModifier

ORDER BY DESC(?count)

In this query we looked for adjectives that impact the term
service through the high level generic dependency relation
in the aggregated user comments. Part of the results are
shown in Table 4.



Table 4: SPARQL Query 3 Sample Results
?adjLabel ?Count
good 28
other 11
online 10
available 9
great 8
easy 5
useful 5
electronic 4
free 4
quick 4

7. CONCLUSION AND FUTURE WORK
We presented in this paper our work on linking text depen-
dencies to improve text analytics. We discussed the link-
ing process of text elements using RDF, following the Stan-
ford typed dependencies representation. Our dependency-
to-RDF translator was applied to process and link 3,140
aggregated user feedback around an e-Government services
survey. This extracted RDF was pushed to a triple-store,
and sample queries were run to highlight some of the added
value and the type of analysis that can be applied on this
new linked layer on top of text.

The contribution of the work is that we are making text de-
pendencies more accessible for consumption by analysts and
other applications. While keeping all the text dependencies
available for processing, we are giving the freedom for the
analyst to ask and extract the pieces of text that are rel-
evant to the study in context. The benefit of having this
linked layer extends also to the nature of RDF and the cor-
responding vocabularies used, through which we were able
to apply inferencing on the Stanford dependencies represen-
tation. For example the links between properties through
the sub-property relations, or between terms’ POS types
through sub-class relations, made it easier to traverse the
graph around the text. Another benefit is that the access to
text through SPARQL endpoints greatly improves the reuse
and consumption of text snippets. For example now it is eas-
ier to apply pattern-based analysis on text by formulating
rules directly through SPARQL queries. Consider the case
where the analyst would like to enforce the rule of invert-
ing the polarity of positive or negative terms that have been
negatively modified in the text. To apply this, the SPARQL
query 3 presented above can be easily modified to add this
rule pattern in the SPARQL condition.

In our future work, we are planning to investigate how we
can use this dependency graph layer on top of text to hook
text documents to decision and performance management
models. We believe that this can open up new channels to
improve business analytics and derive insights from text.
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