
ArgDF: Arguments on the Semantic Web

Fouad Zablith

Master of Science

Division of Informatics

Knowledge and Data Management Stream

The British University in Dubai Jointly with

The University of Edinburgh

February, 2007

Abstract

This dissertation explores the incorporation of the Semantic Web technology

with one of the latest argument representation formats. First I introduce an

extension of the Argument Interchange Format (AIF) ontology; then I put for-

ward AIF-RDF, which is the extended ontology represented in the Resource

Description Framework Schema (RDFS) semantic language. Finally, based on

the theoretical and ontology foundations described in the thesis, I present the

implementation of ArgDF: a Semantic Web-based system built to represent and

visualize arguments. ArgDF comprises a set of tools such as the integration of a

variety of argumentation schemes with the possibility of adding new schemes

from the user interface. Another feature is to attack and support existing ex-

pressions in ArgDF, or to use existing statements in new arguments, leading

to the possibility of building a set of interlinked arguments networks. ArgDF

is the outcome of the fusion of the Semantic Web with the argument represen-

tation format theory, resulting in the emergence of a rich application tool for

authoring new arguments or manipulating existing ones through structured

argumentation schemes, coupled with arguments visualization, navigation and

advanced search techniques.

i

Acknowledgments

First, getting done with my research could not be possible without the support

of my wonderful life partner, Rania, who has always been by my side even

during periods when we were far from each other. I am lucky to have Rodolph

and Sonia, my great parents, my sister Nadine and my brother Jad. They all

had a major impact throughout my life stages. I would like to thank Dr. Iyad

Rahwan, my supervisor, for his time and support during all my dissertation

phases. Most of the Argument Interchange Format ontology extensions are the

result of an extensive cooperation with Dr. Iyad Rahwan and Dr. Chris Reed

whom I would like to thank as well. In addition to this thesis document, the

theoretical background will appear in a paper in the proceedings of the IJCAI

Workshop on Computational Models of Natural Argument (CMNA) 2007 [40].

Many thanks to Simon Wells for maintaining and setting up the University of

Dundee ArgDF repository, and to Nikolai Bykov for maintaining the British

University in Dubai ArgDF repository. Last, but not least, I am grateful to the

Emirates Airlines for the grant that helped me in pursuing my master’s degree.

ii

Table of Contents

List of Figures vii

1 Introduction 1

1.1 Introduction . 1

1.2 Motivation . 3

1.3 Goal . 4

1.4 Scope of the Project . 5

1.5 Summary of Achievement . 5

1.6 Structure of the Document . 6

2 Background 7

2.1 Argumentation Systems . 7

2.1.1 Systems about Formalisms for Inference of Arguments . . 7

2.1.2 Systems for Argumentation Based Decision Making 8

2.1.3 Systems for Argumentation-Based Dialogues 11

iii

TABLE OF CONTENTS

2.1.4 Systems for Argumentation in the Legal Domain 11

2.1.5 Systems for Visualizing Arguments & Learning Domain . 12

2.1.6 Limitations of Current Argumentation Systems 13

2.2 Open Argument Representation on the Web 14

3 AIF Core Ontology and Proposed Extensions Applied 16

3.1 Introduction . 16

3.2 Background: Argument Representation in AIF 17

3.3 AIF Extension . 20

3.3.1 Representing Argumentation Schemes 20

3.3.2 Argument Representation 26

4 AIF-RDF: Ontology Implementation in RDF 30

4.1 Introduction . 30

4.2 Background: RDF & RDFS . 30

4.3 Benefits of Using RDF vs. XML . 32

4.4 Implementation in RDF & RDFS 34

4.4.1 Nodes Instantiation . 34

4.4.2 Edges Instantiation . 35

5 ArgDF: A Semantic Web-based Argumentation System 39

5.1 Introduction . 39

iv

TABLE OF CONTENTS

5.2 ArgDF Platform Overview . 40

5.2.1 ArgDF Repository: Sesame RDF Server 40

5.2.2 Web Scripting: PHP . 42

5.2.3 PHP - Sesame Communication: Phesame 43

5.2.4 Querying the ArgDF Repository: RQL 44

5.2.5 Rendering and Visualization: XSLT & XPath 45

5.2.6 URI Automatic Generation: MySQL Database 46

5.3 Creating New Arguments . 47

5.4 Argument Extension . 50

5.4.1 Support/Attack of Existing Expressions 50

5.4.2 Linking Existing Premises to a New Argument 51

5.4.3 Attacking Arguments through Implicit Assumptions . . . 51

5.5 Advanced Argument Search . 54

5.6 Creation of New Schemes . 55

6 Conclusion and Open Issues 56

Appendices 60

A ArgDF User Manual 60

A.1 Creating a New Argument . 61

A.2 Explicitly Attacking an Existing Claim 62

v

TABLE OF CONTENTS

A.3 Supporting an Existing Claim . 63

A.4 Inspecting an Existing Claim and Implicit Attacks 64

A.5 Using Existing Premises in New Arguments 68

A.6 Argumentation Schemes Manipulation 68

B Building ArgDF in Depth 72

B.1 Phesame for PHP and Sesame communication 72

B.1.1 Opening the Sesame Connection 72

B.1.2 Setting the RDF Repository & Input/Output Parameters . 73

B.2 Writing in the RDF Repository & Uploading RA-Node Example . 74

B.3 RQL and Premises List Query Example 75

B.4 Transforming XML Query Output through XSLT 76

B.5 Creating a New Argument Full Cycle 78

B.5.1 Choosing the Argumentation Scheme 78

B.5.2 Creation of the RA-Node 79

B.5.3 Creation of the Conclusion & Premises 80

B.6 Creating a New Argumentation Scheme 84

C Full AIF-RDF RDFS Ontology Code 87

D ArgDF Argument RDF Code 92

vi

List of Figures

3.1 Concepts and relations in the AIF ontology 19

3.2 The base for a network representation of the scheme example . . 22

3.3 The extended representation of the scheme example 25

3.4 A graphical representation of the scheme including exceptions . . 25

3.5 A full example with an argument & implicit attacks 28

3.6 Extensions to the original AIF . 29

4.1 RDF triples graphical representation 31

4.2 RDF triples graphical example . 32

4.3 Class/ subclass relationship example 35

4.4 Statements in conflict example . 37

4.5 Statements in symmetric conflict example 37

5.1 ArgDF System Architecture . 41

5.2 New Argument Creation Cycle . 48

5.3 XSLT Table Output of Argument Schemes 48

vii

LIST OF FIGURES

5.4 Argument Creation in ArgDF . 50

5.5 Listing Existing Claims . 51

5.6 Interlinked Arguments Network 52

5.7 Implicit Attack Through an Exception in ArgDF 53

5.8 Implicit Attack Through Undermining a Presumption in ArgDF . 53

5.9 ArgDF Advanced Search Tool . 54

5.10 ArgDF Advanced Search Result . 54

5.11 Creating a new Scheme in ArgDF Example 55

A.1 ArgDF Home Page . 60

A.2 Argument Creation Scheme Choice 61

A.3 New Argument Notification . 61

A.4 Argument Parts Creation . 62

A.5 Entering the Argument’s Conclusion 62

A.6 Argument Creation Ending . 62

A.7 Claims List in ArgDF . 63

A.8 Attacking Existing Claim . 63

A.9 Supporting an Existing Claim . 63

A.10 Opening an Existing Argument . 64

A.11 Existing Argument Details . 64

viii

LIST OF FIGURES

A.12 Existing Argument Exceptions Details 65

A.13 Attacking Through Exception Confirmation 65

A.14 Entering the Exception . 65

A.15 Argument Exceptions Updated . 66

A.16 Implicit Argument Attack Through Presumptions - 1 66

A.17 Implicit Argument Attack Through Presumptions - 2 67

A.18 Entering the Undermining Presumption 67

A.19 Undermining Presumption Displayed 67

A.20 Using an Existing Premise . 68

A.21 List of Existing Premises . 68

A.22 Argumentation Scheme Details . 68

A.23 Entering the New Scheme Name 69

A.24 Entering the New Scheme Conclusion 69

A.25 Entering the New Scheme Premises 70

A.26 Entering the New Scheme Entailed Presumption 70

A.27 Entering New Conflict Scheme Name 70

A.28 Entering Conflict Scheme Corresponding Premise 71

A.29 New Scheme Creation Final Screen 71

ix

Chapter 1

Introduction

1.1 Introduction

Analyzing communication between entities could not be done throughout his-

tory without giving argumentation a great deal of study. It started back with

the emergence of philosophy and it has always been highly considered in other

fields such as psychology [13] and business decision making. Argumentation

can be defined as the process of putting together a set of statements aimed to

strengthen or weaken a claimed expression. It’s considered as a core necessity

for reaching a kind of agreement between two or more entities having different

understandings about a certain topic.

Today the argumentation field has been extended to the computer science and

artificial intelligence domain, especially with areas dealing with multi-agent

communication [11, 12, 38]. It has also played a major role in the decision sup-

port systems field.

1

CHAPTER 1: INTRODUCTION

A variety of systems are now available for users to create and represent argu-

ments such as AML Araucaria [42], TruthMapping [48], Reason!Able [22], Com-

pendium [6], and others. But most of them use rigid programming languages

such as XML or database structures for representing and storing arguments,

making them hard to extend and unable to capture rich ontological concepts.

Another drawback of the current systems is the lack of relying on unified argu-

mentation concepts, making it hard to create seamless exchange of data spread

across many repositories.

Expressively rich Semantic Web [7] languages offer more flexible and extend-

able ways for representing arguments. Semantic Web standards have opened

the road for new data storage and interchange techniques. The Semantic Web is

intended to allow better domain representations and more expressive service or

resource descriptions, coupled with an easy exchange and navigation of data.

In addition to relying on rich semantics language, a set of formalized and uni-

fied rules for arguments representation facilitate the exchange of arguments be-

tween different argumentation systems. A unified representation could as well

be serving as a platform in multi-agents environments, where software agents1

coming from different backgrounds can “argue” using the proposed formalized

rules.

Arguments can follow different patterns or scenarios known as argument schemes

[51]. An argument scheme is a way to structure an argument following pre-

1A software agent is an autonomous piece of software, able to operate and act by itself based
on the inputs of other software sources. It is also designed to communicate and argue with other
software agents to come up with certain decisions.

2

CHAPTER 1: INTRODUCTION

defined structuring techniques allowing argument builders to follow specific

requirements, and helping argument readers to better understand argument

representations.

This thesis aims to pass through the different stages, starting from the theoreti-

cal layer down to the technical layer, of building an argumentation system with

the following properties: Open decentralized Web-based system with highly

expressive programming techniques such as the Semantic Web to store, repre-

sent and query arguments following specific argument schemes and based on

a unified argumentation standard.

1.2 Motivation

Different grounds are behind the motivation of this research work. It has been

observed in the ASPIC project that:

“Argumentation tools can be seen to be essentially proprietary, in-

trospective, and unable to leverage shared functionality or content.”

[4, page 61]

Firstly, the word proprietary reflects the need for an open argumentation sys-

tem. Secondly, the word introspective reveals the necessity of a domain inde-

pendent argumentation system where a variety of argumentation schemes can

be used. The final point is pushing towards the need for a system that can share

functionalities with other systems, and share its content by being decentralized

3

CHAPTER 1: INTRODUCTION

and Web enabled.

In addition to the above, the work in this thesis fills a gap in the field of decision

support system tools. As presented in Chapter 2 of this document, decision

support systems have reached a stagnant point in their development: systems

are either highly structured such as decision support systems tools, or highly

scalable such as blogs and online forums accessed through websites. There has

been no further work on developing support systems that could be at the same

time highly structured, and highly scalable.

This has triggered the need for a decentralized open Semantic Web-based ar-

gumentation system fulfilled by ArgDF, able to store, create, update and query

argument structures, using a unified ontology and representing various argu-

ment schemes.

1.3 Goal

The goal of this project is to go through the different stages of creating a domain

independent Web-based semantic argumentation system: starting from the the-

oretical concepts laid by the Argument Interchange Format (AIF) [13] project,

then moving to the extension of the AIF core ontology. This extension is imple-

mented in a Semantic Web language, to finally present ArgDF, a semantically

rich, open and decentralized Web-based system, enabling users to create new

arguments on the Web fulfilling different argumentation schemes as well as

manipulating and visualizing existing arguments, that could be later on spread

4

CHAPTER 1: INTRODUCTION

over many data repositories.

1.4 Scope of the Project

The project’s scope is to go through the different stages of building an argu-

mentation Web-based system formed of different components working collab-

oratively in order to deliver a Semantic Web enabled platform. The system

developed does not focus on argument acceptability calculation and evaluation

[19], but on the argument representation and authoring. Arguments have a

structure but can be represented in many languages such as natural language.

Arguments can also belong to different argumentation scheme theories, such

as Walton’s schemes [51], which are used in this thesis. This tool should be

designed in order to fulfill the requirements of an open argumentation system.

In brief, this system relies on a unified ontology, Semantic Web and a set of

expendable argumentation schemes.

1.5 Summary of Achievement

The work in this thesis involves designing an ontology for describing argu-

ments. The design is based on the recently proposed Argument Interchange

Format (AIF), and is extended in order to capture a specific theoretical model

of argument based on Walton’s schemes set [51]. This is the first extension of

AIF capturing Walton’s schemes. The design is followed by its implementation

5

CHAPTER 1: INTRODUCTION

in RDF to form the AIF-RDF ontology. A Web application layer is built on top of

this ontology enabling users to author new arguments or manipulate and visu-

alize existing ones as well as keyword or advanced argument search. Resource

Description Framework semantic language (RDF) and RDF schema (RDFS) is

used. The Sesame [44] RDF repository is relied on, coupled with a PHP script-

ing interface and MySQL database. Extensible Style Sheet Language (XSLT)

and XPath for XML processing and rendering are used for data visualization.

ArgDF is the first generic, or in other words domain independent, open Web-

based argumentation support system that uses the Semantic Web technology,

relying on unified argumentation standards such as the Argument Interchange

Format (AIF). ArgDF is available at this web address: www.argdf.org.

1.6 Structure of the Document

In the next chapter I discuss the requirements of open arguments’ representa-

tion and give an overview about the existing argumentation systems. In Chap-

ter 3 I present the actual status of the AIF project and its extension. Chapter 4

is related to the AIF-RDF ontology design of the proposed system. In Chapter

5 I talk about the ArgDF system and its features. Four appendices come after

the conclusion: One is a user manual for ArgDF, another is about building the

ArgDF in depth, and the last two include the full ontology code and an argu-

ment RDF code example.

6

Chapter 2

Background

2.1 Argumentation Systems

Various approaches and computer systems have been previously explored to

represent and process arguments. Four main categories are usually targeted by

argumentation systems: formalisms for inference of arguments, argumentation-

based decision making, argumentation-based dialogues and legal domain, and

finally the argumentation and learning category [4].

2.1.1 Systems about Formalisms for Inference of Arguments

Argumentation systems dealing with the formalisms for inference of arguments

have an inference engine for drawing argumentation conclusions, which are

separated from the construction of conclusions. Their focus is on proving en-

tailement theorems. Pollock’s OSCAR [35] is an example of a system imple-

mented that can perform inferences in the concept of defeasible reasoning. De-

7

CHAPTER 2: BACKGROUND

feasibility is a relation between two statements of arguments allowing one of

them to defeat the other at any stage [21]. It has been developed using the LISP

programming language. An example of defeasible logic programming (DeLP)

rules can be checked over the web.1

IACAS [50] is another system working on defeasible argumentation. It has a

command line based interface, and allows also an evaluation of the status of

arguments being: Certain, balanced, undetermined etc.

All the above systems are using simple rule-like based programming languages

and are generally used for theoretical concept proofing. They are mainly stand

alone systems, except for OSCAR which is embedded into other systems.

2.1.2 Systems for Argumentation Based Decision Making

Generally speaking, all argumentation systems indirectly help users or soft-

ware agents in reaching a certain decision or outcome. Argumentation sys-

tems considered as decision making helpers are either systems enabling users

to represent arguments and leave the assessment for the user, or systems able

to evaluate the chain of arguments and suggest the best decision to be taken.

There are systems for decision making under uncertainty such as REACT [20] in

which explanations are structured as arguments to facilitate decision making.

It does not support new arguments structuring or preferences. Arguments are

only hard-coded as explanations for specific problems, helping to reach a single

1http://lidia.cs.uns.edu.ar/DeLP

8

CHAPTER 2: BACKGROUND

decision being the case of the medical domain. RAGs [17] is an argumentation

system in which the decision reached includes risk assessment. STAR [30] is

another decision support system based on risk assessment. It is used in com-

mercial applications. PRETI [1] is a project aiming to build systems based on a

probabilistic approach for decision making. These systems have a weakness in

the knowledge expressiveness, where only limited type and domain dependent

knowledge can be expressed. Another weakness is in the need for a continu-

ous information update, as old information could become outdated for making

decisions under uncertainty. The latter has led to the need of merging and con-

necting these systems to knowledge sources for providing an up-to-date set of

knowledge.

Another group of systems aid in decision making in collaborative environ-

ments. This is when there is a group of persons or agents collaboratively look-

ing for a decision about a certain topic or problem. Most applications in this

category aim for linking arguments with each other using relationships and

claims. Many systems are available such as graphical Issue Based Information

System (gIBIS) [16] that, developed in 1998, helps linking the Issue Based In-

formation System (IBIS) nodes Issue, Position and Argument with external re-

sources to form an IBIS network. A drawback of gIBIS is that it generates a lot

of overhead while using it in decision making scenarios. QuestMapTMis a more

user-friendly version of gIBIS for capturing online discussions among peers in

a team [15]. In addition to the features of QuestMap, Compendium [14] is a com-

mercial application based on IBIS, which offers enhanced tools such as XML &

9

CHAPTER 2: BACKGROUND

RDF support, as well as connection to other data stores. Another application

falling in this domain is SIBYL [31], which is more expressive than the gIBIS

tool and allows qualitative evaluation of arguments. Zeno [23], another IBIS

based tool, is a Web-based system supporting participants during online dis-

cussions. Users are able to structure their arguments and set their preferences

among them. Different tools made use of Zeno such as the GeoMed system [43]

facilitating discussions about city planning decisions. The Delphi Mediation On-

line System (DEMOS) [32] relies on Zeno as a core component. DEMOS is a

system used for “online-democracy” facilitating debates among participants.

HERMES [28] is another decision-support system based on Zeno, including in-

formation retrieval supporting specific claims useful in the medical field. HER-

MES also supports constraint solving and conflict detection features, as well as

case-based reasoning allowing the adaptability on the status and specific cases

of discussions and the team’s collaborators.

TruthMapping [48] is a Web-based system for capturing conversations in a

group. In brief, it helps users store their claims and support them with corre-

sponding links. Participants can agree or disagree over a certain topic that has

already been posted. Parmenides [5] is another Web-based system for support-

ing deliberation over actions, and is based on a specific scheme for persuasion

over action.

10

CHAPTER 2: BACKGROUND

2.1.3 Systems for Argumentation-Based Dialogues

Argumentation in the dialogue field is aimed to capture communication be-

tween humans or software agents. There are different dialogue types that re-

flected on the design of the systems: Information-seeking dialogues, inquiry,

persuasion, negotiation, and deliberation dialogue [52]. Examples of argumentation-

based dialogue systems are Homey [8–10] applied in the medical field, and the

PARMA [25, 26] model. In such systems, an agreement of the semantics should

be set between the communicating subjects, in order to be working on unified

communication standards to avoid interaction clashes. For example, a soft-

ware agent set to analyse dialogues in a Homey system should be programmed

specifically to be able to render Homey’s dialogues, and can not be used in

other argumentation-based dialogues systems.

2.1.4 Systems for Argumentation in the Legal Domain

Most of the systems dealing with argumentation in the legal domain are still

under research. Such systems aim to apply the argumentation process in fields

where there are conflicting interpretations over the same topic. Another aim is

to enable reasoning with precedents like the HYPO system [3], which require

relying on previous facts to conform and support current similar facts. A third

type of such systems is reasoning under disagreement with the presence of con-

flicting rules or their legal validity. CABARET [46] is a system that deals with

the tactics for dispute using rules and cases. ArguMed [49] and ProSupport [37]

11

CHAPTER 2: BACKGROUND

are also designed for a legal audience.

2.1.5 Systems for Visualizing Arguments & Learning Domain

Visualizing arguments is dated back to 1913 with Wigmore’s “Chart Method”

[47]. Now with the presence of computers’ visual techniques, it became easier

to process and visualize large amount of argumentation data. Visualization of

arguments is important in collaborative environments where people are having

a certain debate, or in learning environments in which students may be able to

understand more about arguments with their visualization features, and have

a clearer idea about the basics of argumentation. Today we can see some Web-

based systems like TruthMapping using visualization techniques to show the

status of the arguments entered by users in the Web system.

Some systems are categorized in the learning field such as: Reason!Able [22],

Athena [41] and Araucaria [42]. Reason!Able is a tool through which users can

build arguments using a simple straight forward graphical interface. Athena is

another easy to use tool offering argument visualization features.

Araucaria AML is an argumentation system through which arguments can be

built starting from an argumentation text input file, by specifying the parts

of the arguments to be “marked up” using the Argument Mark-up Language

(AML). One of the Araucaria’s advantages is that it allows the annotation of

arguments using specific schemes, and a visualization of the schemes is shown

to the users to assist them in the way their arguments should be built.

12

CHAPTER 2: BACKGROUND

ClaiMaker [45] is another argumentation system that includes visualization of

arguments. Questmap and Compendium also use a set of visualization tools

targeting professional areas such as the legal domain, and supporting business

firms for decision making.

2.1.6 Limitations of Current Argumentation Systems

Nearly most of the current argumentation systems deal with argumentation

without targeting the issue of interconnectivity between different systems, and

flexibility of extension. Some few systems, such as Araucaria, use an XML

representation with a well specified Document Type Definition (DTD) which

could form the basis of such exchange. Relying on databases, as in the case

of TruthMapping and Parmenides, could somehow create a kind of rigidity in

extending structures. The modification of a database schema usually requires

taking care of the tables reference keys and tables structures, requiring the in-

volvement of the database administrators and designers. On the other hand, a

Semantic Web schema is somehow more flexible when it comes to building on

existing ontologies.

Another drawback is the trade-off between scalability and structure in decision

support systems. Systems capturing arguments from a large number of par-

ticipants such as forums and online blogs are highly unstructured. They are

usually of the form of a text box where users can enter any piece of information

without abiding by any predefined structures. TruthMapping’s arguments are

a set of premises, supporting a conclusion, without abiding by specific schemes

13

CHAPTER 2: BACKGROUND

or argumentation scenarios. This might not be enough in academic and ac-

curate decision making backups. Users will not be able to apply specific argu-

mentation techniques known as argument schemes [51]. On the other side, highly

structured systems such as decision support tools are highly structured and are

implemented in small scale environments due to their specialized tasks.

Domain dependency is also considered a drawback, as most of current systems

depend on specific domains and argumentation theories. For example the Par-

menides system is based on a specific theory of persuasion over action. This

make them hard to be tested in different domains and scenarios.

2.2 Open Argument Representation on the Web

Having a Semantic argumentative structure on the Web can, on one hand, help

in achieving a rich representation and navigation of argument structures Web

by providing means for tagging arguments and argument parts; and on the

other hand, this same structure may also be used in the future by software

agents to enable automated processing and exchange of arguments among soft-

ware agents.

Targeting the niche of having a highly structured argument representation sys-

tem and at the same time a highly scalable one, has led to have an open argu-

ment representation Semantic system with the following features:

R1 Supporting the storage, creation, update and query of argument struc-

tures;

14

CHAPTER 2: BACKGROUND

R2 Having Web-accessibility features and an open data repository;

R3 Relying on a language based on open standards, thus enabling collabora-

tive development of new tools and features;

R4 Using a unified argumentation ontology;

R5 Supporting the representation, annotation and creation of arguments us-

ing a variety of argument schemes;

This dissertation works on the theoretical and software basis to come up with a

system fulfilling the above requirements.

15

Chapter 3

AIF Core Ontology and Proposed

Extensions Applied

3.1 Introduction

“An ontology is an explicit specification of a conceptualization. The term is

borrowed from philosophy, where an ontology is a systematic account of exis-

tence” [27]. Representing knowledge and conceptual pieces of information in

a computer system initially requires designing an ontology, which is the back-

bone of any Semantic Web system, in order to have a well defined set of con-

cepts and relationships. In this thesis’ case, the ontology is based on the AIF

concepts, and includes the core ontology of the AIF, extended to capture Wal-

ton’s schemes set.

16

CHAPTER 3: AIF CORE ONTOLOGY AND PROPOSED EXTENSIONS APPLIED

3.2 Background: Argument Representation in AIF

The Argument Interchange Format (AIF) is an effort towards standardizing ar-

gumentation concepts, in order to have an ontology through which theoreti-

cally any scheme can be applied [13].

The AIF project is a work promising to be offering a lot of benefits such as:

• Having a unified platform where the format of exchanging arguments can

be cohesive.

• Reaching a kind of understanding and agreement on a core ontology to

which different argumentation scenarios can be tested on.

• Having a compatible platform on which different tools and systems can

be plugged in order to facilitate the argumentation tests. Visualization

tools can also be interrelated and linked using this format.

• Enabling multi-agent systems to have an easy way to exchange arguments

in a formalized way whether within the same framework or spread across

multiple frameworks.

• Facilitating the analysis of arguments coming from agents through visual

representations and arguments spotting.

• Having an explicit machine readable syntax, and (if applicable) enabled

machine processing semantics.

The AIF model focuses on:

17

CHAPTER 3: AIF CORE ONTOLOGY AND PROPOSED EXTENSIONS APPLIED

• Having the core concepts that can be enhanced and added-on with time.

Then extensions to this core concept can be created, representing more

specific domains.

• Having an abstract model in which concepts and relations between them

are defined, coupled with concrete syntaxes.

Argument Representation: Nodes

In the AIF ontology, arguments are represented by a set of nodes connected

through edges. There are 2 types of nodes: the information nodes (I-Nodes)

which hold pieces of information or data that acts as a claim, premise, data etc.,

and scheme nodes (S-Nodes) representing the arguments’ scheme which repre-

sent a model of reasoning. Currently there are 3 types of scheme nodes rep-

resented in the AIF: the rule of inference application (RA-Node) for representing

rules such as inference rules, preference application (PA-Node) for representing

argument preferences and conflict application (CA-Node) for modeling conflicts

between arguments. The AIF core ontology is represented in Figure 3.1 [13].

Argument Representation: Edges

The edges represent relationships linking argument nodes with each other. In

the original AIF specification, edges are not typed. Instead, their semantics is

understood implicitly from the types of nodes they connect. There are a set of

restrictions imposed by the AIF for managing the directions and allowed con-

18

CHAPTER 3: AIF CORE ONTOLOGY AND PROPOSED EXTENSIONS APPLIED

Figure 3.1: Concepts and relations in the AIF ontology

nections between nodes. For example, an edge coming out from an I-Node can

only be directed to an S-Node. Table 3.1 represents the list of implicit semantics

of the argument edges in AIF.

As presented in the extended ontology section and in the AIF-RDF chapter,

types are explicitly annotated with labels, and more specific types of edges have

been added to enable querying and extracting the ontology parts based on the

types of edges.

19

CHAPTER 3: AIF CORE ONTOLOGY AND PROPOSED EXTENSIONS APPLIED

to I-node to RA-node to PA-node to CA-node
from I-node I-node data used in

applying an
inference

I-node data used in
applying a
preference

I-node data in conflict
with information in node
supported by CA-node

from RA-node inferring a
conclusion in
the form of a
claim

inferring a
conclusion in the
form of an inference
application

inferring a
conclusion in the
form of a preference
application

inferring a conclusion in
the form of a conflict def-
inition application

from PA-node applying a
preference over
data in I-node

applying a
preference over
inference
application in
RA-node

meta-preferences:
applying a
preference over
preference
application in
supported PA-node

preference application in
supporting PA-node in
conflict with preference
application in PA-node
supported by CA-node

from CA-node applying
conflict
definition to
data in I-node

applying conflict
definition to
inference
application in
RA-node

applying conflict
definition to
preference
application in
PA-node

showing a conflict holds
between a conflict def-
inition and some other
piece of information

Table 3.1: Informal semantics of untyped edges in the core AIF

3.3 AIF Extension

The AIF core ontology has been extended to represent Walton’s scheme sets [51]

and represent arguments for delivering a Semantic Web-based system built on

the top of this extension.

3.3.1 Representing Argumentation Schemes

The concept of schemes is an idea towards categorization of the way arguments

should be built, and offers a common understanding of argument structure.

Many theorists such as Toulmin [47] have tackled the issue of argument repre-

sentation and structures. However, Walton’s schemes were very influential in

computational work. As per Walton’s definition [51], “Argumentation schemes

are forms of argument representing premise-conclusion and inference struc-

tures of common types of arguments.” Each Walton scheme type has a name,

conclusion, set of premises and a set of critical questions. Critical questions are

20

CHAPTER 3: AIF CORE ONTOLOGY AND PROPOSED EXTENSIONS APPLIED

a way to let the user know about the weaknesses of the argument based on a

specific scheme, and give a way for others to attack those arguments.

Following is an example of a Walton scheme, for arguments from expert opin-

ion:

Scheme name:

– Argument from Expert Opinion

Premises:

– E is an expert in domain D

– E asserts that A is known to be true

Conclusion:

– A may (plausibly) be taken to be true

Schemes in our extended ontology are represented as class instances and not

as classes. This offers the possibility for the user to add new schemes from the

system interface, without having to modify the ontology itself.1

The class “SchemeDescription” is the main class handling the main type of the

schemes. It has three subclasses: the “ConflictScheme,” “PreferenceScheme”

and “RuleScheme.” The “SchemeDescription” general class has 3 attributes:

– hasSchemeName: of type “string,” it’s a slot for entering the name of the

scheme, having at most one value.

1This allows for functionality similar to Araucaria’s “schemeset” construction

21

CHAPTER 3: AIF CORE ONTOLOGY AND PROPOSED EXTENSIONS APPLIED

RuleSchemeInstance 0
hasSchemeName: Argument from
expert opinion
Type: PresumptiveInferenceScheme

A may plausibly be
taken to be true

type: PremiseDesc
text: E is an expert in
domain D containing
proposition A

type: PremiseDesc
text: E asserts that A
is known to be true

hasPremiseDesc

hasConclusionDescription

hasPremiseDesc

Figure 3.2: The base for a network representation of the scheme example

– hasPremiseDescription: used to link the scheme to its corresponding premises.

– hasConclusionDescription: used to point to the corresponding scheme’s con-

clusion.

Walton’s schemes are represented as instances of the class “PresumptiveInfer-

enceScheme.” This scheme design helps in guiding users to specify to which

scheme their argument belongs, as in the ontology itself they have scheme in-

stances that act as examples to clarify how to build arguments. An “instance”

of a scheme is specified by listing its premises, conclusion and name. Figure 3.2

visualizes the “Argument from expert opinion” scheme graph.

Presumptions and exceptions [24] embedded inside schemes play an important

role in argumentation. They open the way for a more fruitful communication

among peers who are able to know the presumptions that the argument au-

thor is presuming. They are considered as implicit information in a scheme.

22

CHAPTER 3: AIF CORE ONTOLOGY AND PROPOSED EXTENSIONS APPLIED

Capturing them in the ontology gives a key advantage for the implemented

argumentation system.

Presumptions and exceptions are indirectly represented by the critical ques-

tions in Walton’s schemes as discussed by Prakken, Gordon and Walton [24, 36],

and they can be extracted based on them.

For example in the “Argument from Expert Opinion” scheme, there are 6 crit-

ical questions. Each one of them either represents a presumption or an excep-

tion:

1. How credible is expert E as an expert source? Corresponding Presumption:

E is credible as an expert source.

2. Is E an expert in the field that the assertion A, is in? Corresponding Pre-

sumption: E is an expert in the field that A is in

3. Does E’s testimony imply A? Corresponding Presumption: E’s testimony

does imply A.

4. Is E reliable? Corresponding Exception: E is biased.

5. Is A consistent with the testimony of other experts? Corresponding Excep-

tion: Other experts disagree.

6. Is A supported by evidence? Corresponding Presumption: There is evidence

proving A.

Sometimes presumptions and exceptions can be part of many schemes at the

same time. That’s why in the extended AIF we represented them as instances

23

CHAPTER 3: AIF CORE ONTOLOGY AND PROPOSED EXTENSIONS APPLIED

of a class, and not as attributes, in order to allow explicit relationships with

one or many schemes. For this reason the scheme parts are integrated in the

ontology using the 4 classes: “PremiseDescription,” “ConclusionDescription,”

“Presumption” and “Exceptions,” subclasses of class “Form,” which is an ad-

ditional extended subclass of the “Node” class.

The “presumtiveInferenceScheme” class has additional attributes representing

the links to presumptions through the “hasPresumption” and to exceptions

through the “hasException” relationship.

Usually some presumptions in a Walton scheme are linked to a scheme premise,

forming a kind of entailment relationship. For example, the scheme premise “E

is an expert in domain D containing proposition A” entails the presumption

that “E is an expert in the field that A is in.” Figure 3.3 shows an extended

graphical representation of the “Argument from expert opinion” scheme. It’s

worth to note that with the integration of the implicit presumptions and excep-

tions, critical questions are indirectly represented. This way there was no need

to include them in the ontology.

Exceptions are usually used to represent a certain type of conflict that might

occur, if the corresponding exception happens to be true. In the AIF ontology

argumentation conflicts are categorized in various types and represented in the

form of conflict schemes. For example, the exception “E is biased” is of type

“Conflict from bias” scheme. The way this is captured in the ontology is by

representing “Conflict from bias” as an instance of the class “conflictScheme,”

linked to the exception “E is biased” through the “hasPremiseDescription” rela-

24

CHAPTER 3: AIF CORE ONTOLOGY AND PROPOSED EXTENSIONS APPLIED

A may plausibly be
taken to be true

RuleSchemeInstance 0
type: PresumptiveInferenceScheme
hasSchemeName: Argument from
expert opinion

type: PremiseDesc
text: E is an expert in
domain D containing
proposition A

type: PremiseDesc
text: E asserts that A
is known to be true

type: Presumption
hasDescription: E is credible
as an expert source

type: Presumption
hasDescription: E’s
testimony does imply A

type: Presumption
hasDescription: E is an
expert in the field that A
is in

hasPresumption

entails

hasConclusionDescription

hasPremiseDesc

hasException

hasExceptionException: E is biased

Exception: A is
consistent with the
testimony of other

experts

Figure 3.3: The extended representation of the scheme example

tionship. A full representation of the “Argument from Expert Opinion” scheme

is shown in Figure 3.4.

A may plausibly be
taken to be true

RuleSchemeInstance 0
type: PresumptiveInferenceScheme
hasSchemeName: Argument from
expert opinion

type: PremiseDesc
text: E is an expert in
domain D containing
proposition A

type: PremiseDesc
text: E asserts that A
is known to be true

type: Presumption
hasDescription: E is credible
as an expert source

type: Presumption
hasDescription: E’s
testimony does imply A

type: Presumption
hasDescription: E is an
expert in the field that A
is in

hasPresumption

entails

hasConclusionDescription

hasPremiseDesc

Type: ConflictScheme
hasSchemeName: Conflict From
Testimonial Inconsistency

type: PremiseDesc
text: Other experts disagree

Type: ConflictScheme
hasSchemeName: Conflict
from Bias

type: PremiseDesc
text: Speaker is biased

hasPremiseDescription

hasPremiseDescription

hasException

hasException

Figure 3.4: A graphical representation of the scheme including exceptions

25

CHAPTER 3: AIF CORE ONTOLOGY AND PROPOSED EXTENSIONS APPLIED

3.3.2 Argument Representation

In the extended AIF, the “RA-Node,” a subclass of the “S-Node” class, has a

purpose differing a bit from the one proposed in the AIF standard. It has been

used as a rule to connect the different argument parts and to specify to which

scheme the argument belongs to. In other words, an argument is an instance of

the “RA-Node” class, which has a conclusion, premises and fulfilling a specific

scheme. For this purpose the “I-Node” class has been extended by having the

“Conclusion” and “Premise” as its subclasses.

The edges connecting the argument parts have been explicitly specified by hav-

ing an “edge” relationship, under which more specified edge types are created.

For example the premise role is to support the conclusion. This has been trans-

lated into the ontology by a relationship called “supports,” which is an edge

going out from the premise, pointing to the corresponding “RA-Node” which

is linked to the conclusion through the “hasConclusion” edge. The inverse of

the “Supports” is represented by the “hasPremise” edge, which is an relation

from the “RA-Node” to the premise.

The argument is bound to a specific scheme by using a “fulfillsScheme” rela-

tionship which is an edge from the “RA-Node” to the scheme used. The pro-

posed ontology also captures more details and allows the link of the argument’s

conclusion and premises to the scheme parts (premises and conclusion descrip-

tions). This proved to be very efficient in the implementation as users are sup-

posed to be explicitly building arguments fulfilling the scheme used, not only

26

CHAPTER 3: AIF CORE ONTOLOGY AND PROPOSED EXTENSIONS APPLIED

by linking on the name level, but also by matching the argument’s parts to the

scheme parts.

In order to clarify the concepts I presented above, I will take a concrete ar-

gument example in the sports domain fulfilling the “Argument from Expert

Opinion” scheme:

Argument’s conclusion:

– Brazil has the best football team

Argument’s premises:

– Allen says that Brazil has the best football team

– Allen is an expert in sports

For the purpose of showing how the implicit argument statements can be used,

the above argument is attacked implicitly through one of its exceptions and

presumptions. In Figure 3.5, the argument in the bottom right of the figure is

fulfilling the scheme as well as the scheme parts. A premise stating that “Allen

is not an expert in sport” and undermining the presumption that “E is an expert

in the field that A is in,” attacks the argument through a “CA-Node” (conflict

application) going to the argument’s “RA-Node.” The figure also visualizes

how an exception can be used to attack an argument through another “CA-

Node.”

Finally, after stating the above example, it is worthwhile mention another ad-

vantage of the presence of presumptions. In many cases, users sometimes enter

27

CHAPTER 3: AIF CORE ONTOLOGY AND PROPOSED EXTENSIONS APPLIED

type: ConclusionDesc
text: A may plausibly
be taken to be true

RuleSchemeInstance 0
type: PresumptiveInferenceScheme
hasSchemeName: Argument from
expert opinion

type: PremiseDesc
text: E is an expert in
domain D containing
proposition A

type: PremiseDesc
text: E asserts that A
is known to be true

type: Presumption
hasDescription: E is credible
as an expert source

type: Presumption
hasDescription: E’s
testimony does imply A

type: Presumption
hasDescription: E is an
expert in the field that A
is in

hasPresumption

entails

hasConclusionDescription

hasPremiseDesc
Type: ConflictScheme
hasSchemeName: Conflict From
Testimonial Inconsistency

type: PremiseDesc
text: Other experts disagree

Type: ConflictScheme
hasSchemeName: Conflict
from Bias

type: PremiseDesc
text: Speaker is biased

hasPremiseDescription

hasPremiseDescription

hasException

hasException

type: Premise
text: Allen says that Brazil
has the best football team

type: Premise
text: Allen is an
expert in sports

type: RA-node

type: Conclusion
text: Brazil has the best
football team

supportssupports

type: CA-node CA_Node_attackstype: Premise
text: Allen is biased attacks

fulfilsP
rem

iseD
esc

fulfilsPremiseDesc fulfilsPremiseDesc

fulfilsScheme fulfilsC
onclusionD

esc

hasConclusion

type: CA-node CA_Node_attacks
type: Premise
text: Allen is not
expert in sports

attacks

underm
inesP

resum
ption

Figure 3.5: A full example with an argument & implicit attacks

a missing part of an argument, such as not explicitly specifying that football is

a type of sports, which is at the end something obvious. Now with explicitly

representing the presumptions in the ontology, it may be automatically inferred

that football is presumed to be a type of sports.

The full ontology design, including extensions, is displayed in Figure 3.6.

28

CHAPTER 3: AIF CORE ONTOLOGY AND PROPOSED EXTENSIONS APPLIED

is-a

Node

S-Node I-Node

PA-Node RA-NodeCA-Node Conclusion Premise

Scheme

ConflictScheme PreferenceScheme

Logical
Preference
Scheme

Presumptive
Preference
Scheme

RuleScheme

Deductive
Inference
Scheme

Inductive
Inference
Scheme

Presumptive
Inference
Scheme

caNode_Attacks

isAttacked

hasPremise

is-a

textcaNode_isAttacked

attacks

supports

edgeFromSNode

fulfilsS
chem

e

edgeFromINode

hasConclusion

hasSchemeName

is-a is-a

PremiseDesc Presumption

hasP
resum

ption

hasPremiseDescription

hasException

fulfilsPremiseDesc entails

is-a

is-a

is-a

ConclusionDesc

fulfilsConclusionDesc

is-a

hasConclusionDescription

Form

is-a

hasDescription

underminesPresumption

Figure 3.6: Extensions to the original AIF

29

Chapter 4

AIF-RDF: Ontology Implementation in

RDF

4.1 Introduction

In this chapter I introduce the semantic language used in the project, and how

the ontological concepts presented in the previous chapter are encoded in RDF.

4.2 Background: RDF & RDFS

The system implemented in this thesis is based on the Resource Description

Framework (RDF). RDF is a knowledge representation language to represent

resources in an XML based format. In RDF, each resource has a Universal Re-

source Identifier (URI), which is its unique identification key. A resource can be

considered as a physical entity like an electronic document being for example a

picture or a file, or a concept like “person” or the medical domain concepts [18].

30

CHAPTER 4: AIF-RDF: ONTOLOGY IMPLEMENTATION IN RDF

Literal

Subject

Object

Predicate

Predicate

Figure 4.1: RDF triples graphical representation

In the RDF document, we say that resources are described by statements. RDF

statements are usually represented by triples [2] as shown in Figure 4.1. The

subject in the triple is the entity or resource that is being described in the state-

ment. The relationship between the subject and the object is called the predicate.

The object is mainly the entity that has been pointed to by the predicate in the

statement. A literal is a well determined value such as a number or a string.

RDF statements can be captured in different formats.

For example, capturing the statement “Tweety has a yellow colour” in an RDF

statement can be done in the following ways:

• N3 (a simple triples representation): (Tweety, hasColour, Yellow)

• Graphical triples notation as displayed in Figure 4.2.

• RDF/XML format:

<rdf:Description rdf:about="Tweety">
<rdf:hasColour>

<rdf:Description rdf:about="Yellow"/>
</rdf:hasColour>

</rdf:Description>

31

CHAPTER 4: AIF-RDF: ONTOLOGY IMPLEMENTATION IN RDF

YellowTweety hasColour

Figure 4.2: RDF triples graphical example

RDF also allows specifying the type of entities such as saying that Tweety is of

type bird:

<rdf:Description rdf:about="Tweety">
<rdf:type rdf:resource="bird"/>

</rdf:Description>

RDF Schema (RDFS) is an XML based language that comes on the top of the

RDF documents. Relationships and concepts are defined in the schema. RDFS

allows users to have a specific vocabulary related to their RDF statements. It

is considered as a bridge between RDF and the ontology conceptual layer. Re-

lationships can be for example a class-subclass relationship. The schema offers

many notions that made building Web ontologies possible [2], such as class,

domain, range, label, subclassOf and many others.

4.3 Benefits of Using RDF vs. XML

RDF was introduced around one year after the launch of the XML 1.0 standard

that is the basis of a number of existing argumentation systems. There are a

number of important differences between RDF and XML, which are relevant to

this project:

• RDF’s data model is based on the creation of statements, while XML is

based on the creation of documents. The former lends itself more nat-

32

CHAPTER 4: AIF-RDF: ONTOLOGY IMPLEMENTATION IN RDF

urally to representing argumentative statements and their interrelation-

ships.

• RDF uses the graph concept that links different entities of statements with

each others, while XML is tree-based. Argument networks follow the

graph concepts where nodes are interconnected, making RDF more suit-

able for representing (and potentially visualising) them.

• RDF clearly presents external relationships between entities. On the other

side, the XML document, only presents relationships between different el-

ements in the document implicitly as per their hierarchy in the tree. There

are no external relationships that can tie two entities directly.

• The graph concept and the subject-object relationship in RDF makes ma-

nipulating network structures (e.g. argument networks) easy. Adding

new statements to an RDF statement repository can be done dynamically,

without having to worry about the order of the statements inserted –and

there are good software tools for doing this. On the other hand, updat-

ing an XML document requires taking care of the tree structure and the

node’s order before being able to update the document.

• The triple model of RDF simplifies the way semantics are represented. In

the case of XML, on the other hand, there may be multiple documents that

semantically represent the same structure.

33

CHAPTER 4: AIF-RDF: ONTOLOGY IMPLEMENTATION IN RDF

4.4 Implementation in RDF & RDFS

Now I am going to provide an overview of how the extended AIF ontology

is translated into RDFS code. The implementation is done using Protégé [39],

an ontology builder tool developed at Stanford University to help encoding

ontological concepts in Semantic Web languages such as RDFS.

4.4.1 Nodes Instantiation

For the extended ontology presented in Figure 3.6, we represented the nodes as

classes, and the edges connecting the nodes as class attributes. Class /subclass

relationships are built in Protégé by using the classes’ hierarchy in the graphical

interface. For example, Figure 4.3 that includes the “I-Node,” “S-Node” and

“Form” as subclasses of the class “Node,” has generated the following RDFS

code:

<rdfs:Class rdf:about="&kb;Node" rdfs:label="Node">
<rdfs:subClassOf rdf:resource="&rdfs;Resource"/>

</rdfs:Class>
<rdfs:Class rdf:about="&kb;S-Node" rdfs:label="S-Node">

<rdfs:subClassOf rdf:resource="&kb;Node"/>
</rdfs:Class>
<rdfs:Class rdf:about="&kb;I-Node" rdfs:label="I-Node">

<rdfs:subClassOf rdf:resource="&kb;Node"/>
</rdfs:Class>
<rdfs:Class rdf:about="&kb;Form" rdfs:label="Form">

<rdfs:subClassOf rdf:resource="&kb;Node"/>
</rdfs:Class>

One can clearly see that the top class “Node” is a subclass of a predefined de-

fault class “Resource.” The “subClassOf” relationship sets the link between the

top class and its subclasses.

34

CHAPTER 4: AIF-RDF: ONTOLOGY IMPLEMENTATION IN RDF

Node

S-Node I-Node Form

is-a

Figure 4.3: Class/ subclass relationship example

Passive information contained in nodes such as text or description are imple-

mented using the string attribute type. For example the “text” attribute that

holds the data of premises and conclusions is represented as literal (specific

value):

<rdf:Description rdf:about="http://protege.stanford.edu/kb#text">
<rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/>
<a:maxCardinality> 1 </a:maxCardinality>
<rdfs:label>text</rdfs:label>
<rdfs:domain rdf:resource="http://protege.stanford.edu/kb#I-Node"/>
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/>

</rdf:Description>

The “maxCardinality” sets the maximum number of values the text can hold.

In this case only one value is allowed. The “domain” sets the domain of this

attribute such as the I-Node class in the above example. The “range” specifies

the allowed values for this attribute which is “literal” in this case.

4.4.2 Edges Instantiation

The edges connecting the different arguments’ parts have been presented as

class’ attributes. Restrictions on the edges imposed by the AIF such as an edge

coming out from an “I-Node” can only be directed to an “S-Node,” has been im-

plemented using the RDF attributes domain and range. Most of the edge prop-

erties have been created as sub-properties of the attribute “edge.” The “edge-

35

CHAPTER 4: AIF-RDF: ONTOLOGY IMPLEMENTATION IN RDF

FromINode” relationship represents an edge coming out from an “I-Node” and

has the range restricted to the “S-Node” class. The “edgeFromSNode” is an-

other relationship representing the edges going out of an “S-Node” and has as

range the complete “Node” class as in the AIF, edges are allowed to go from an

“S-Node” to another “S-Node” as well as an “I-Node.” Both edge relationships

are required with one or multiple values. This was successfully implemented

using Protégé, which for example generated the following RDFS code for the

“edgeFromSNode” property:

<rdf:=Description rdf:about="edgeFromSNode">
<rdf:type rdf:resource="Property"/>
<a:minCardinality> 1 </a:minCardinality>
<rdfs:label> edgeFromSNode </rdfs:label>
<rdfs:range rdf:resource="Node"/>
<rdfs:domain rdf:resource="S-Node"/>
<rdfs:subPropertyOf rdf:resource="edge"/>

</rdf:Description>

The “supports” edge that comes out of a premise to an “RA-Node” is a sub-

property of “edgeFromINode” and is translated into the following RDFS code,

noting that “supports” is the inverse property of the “hasPremise” relationship

or edge:

<rdf:Description rdf:about="http://protege.stanford.edu/kb#supports">
<rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/>
<rdfs:label>supports</rdfs:label>
<rdfs:domain rdf:resource="http://protege.stanford.edu/kb#Premise"/>
<rdfs:range rdf:resource="http://protege.stanford.edu/kb#RA-Node"/>
<rdfs:subPropertyOf rdf:resource="http://protege.stanford.edu/kb#edgeFromINode"/>
<a:inverseProperty rdf:resource="http://protege.stanford.edu/kb#hasPremise"/>

</rdf:Description>

The attack relationship between two conclusions or a conclusion and a premise

in AIF-RDF has been implemented following the non-symmetrical conflict ap-

proach which is represented by two pairs of edges. It has an advantage to know

36

CHAPTER 4: AIF-RDF: ONTOLOGY IMPLEMENTATION IN RDF

from which statement the attack has been issued. An attack issued from a spe-

cific I-Node i1 to another I-Node i2 is specified by a predicate/edge attack go-

ing from i1 to a conflict application node (CA-Node) c and by another pred-

icate/edge CANode_Attacks from the conflict node c to the attacked node i2.

Figure 4.4 visualizes the attack process coming from the statement “Brazil has

the best football team” attacking the statement “Germany has the best football

team.” The inverse of the attack process has been also implemented to enhance

argument querying.

Type: Conclusion
Text: Brazil has the

best football team

Type: Conclusion
Text: Germany has the

best football team

Type: CA-Node
Attacks CANode_Attacks

Figure 4.4: Statements in conflict example

Note that this attack is asymmetric. In order to capture a symmetric attack, two

CA-Nodes are needed. A symmetric attack reflects the case when two state-

ments are mutually attacking one another. This is represented in Figure 4.5.

Type: Conclusion
Text: Brazil has the

best football team

Type: Conclusion
Text: Germany has the

best football team

Type: CA-Node
Attacks CANode_Attacks

Type: CA-Node
AttacksCANode_Attacks

Figure 4.5: Statements in symmetric conflict example

Finally, we require that all types of edges and nodes classes are disjoint, as it

is forbidden to have a node of type “I-Node” and “S-Node” at the same time.

37

CHAPTER 4: AIF-RDF: ONTOLOGY IMPLEMENTATION IN RDF

But unfortunately disjointedness can not be expressed in RDFS, considered one

of the limitations of this semantic language. This issue may be handled in the

future by using the Web Ontology Language (OWL) [33] that allows the repre-

sentation of such requirements.

Details of the full encoded AIF-RDF can be found in Appendix C.

38

Chapter 5

ArgDF: A Semantic Web-based

Argumentation System

5.1 Introduction

ArgDF is a Semantic Web-based system built on the top of the AIF-RDF ontology

proposed in the previous chapter. ArgDF enables users to create and query

semantically annotated arguments on the Web using different argumentation

schemes. The system also allows users to manipulate arguments by attacking or

supporting parts of existing arguments, and use existing parts of an argument

in the creation of new arguments. ArgDF also offers flexible features, such as

the ability to create new argumentation schemes from the user interface. As

such, ArgDF is an open platform not only for representing arguments, but also

for building interlinked and constantly evolving argument networks. In the

remainder of this chapter, I describe the system in detail.

39

CHAPTER 5: ARGDF: A SEMANTIC WEB-BASED ARGUMENTATION SYSTEM

5.2 ArgDF Platform Overview

Being a Web-based system, ArgDF relies on different components interacting

with each other such as Sesame RDF repository, scripting, XSLT and MySQL

database. Figure 5.1 visualizes the system architecture, showing the processes

of inserting RDF statements and querying the RDF data repository.

The process of querying elements of existing arguments starts by sending a

request to query the repository through the PHP [34] classes. The result is re-

turned in XML format, which is then processed through extensible style sheet

language transformation (XSLT) and displayed back to the user in a presentable

format.

The process of creating new arguments or schemes, and the process of creating

new schemes start by checking the URI number stored in a MySQL database.

This URI value is extracted and applied to the inserted RDF statement in the

repository. The writing process is followed by the increase of the URI counter

by one in the MySQL database.

In the coming subsections I briefly introduce each component ArgDF relies on.

5.2.1 ArgDF Repository: Sesame RDF Server

Sesame is an RDF repository for storing RDF statements. It works on the Apache

Tomcat1 server as it has Java servlets containers, a necessary requirement for

handling Sesame’s operations. Sesame has a built in interface offering many

1http://tomcat.apache.org/

40

CHAPTER 5: ARGDF: A SEMANTIC WEB-BASED ARGUMENTATION SYSTEM

MySQL
Database

Apache
HTTP Server

Apache
Tomcat

Web Browser

1- Query Request

2- Query Request

5- XML
Transformed

3- Query Results XML

Sesame RDF
Repository

XSLT
XPath 4- Query Results XML

PHP Scripts
& Phesame

Classes

1- Inserting RDF Statement

2- Inserting RDF
Statement

Apache TomcatApache HTTP Server

MySQL
Database

Web Browser

1-Query Request

4-XML
Transformed

XSLT
XPath 3-Query Results XML

PHP Scripts

1-Inserting RDF Statement

Phesame
Classes

&
Functions

3-Writing

2-Querying

Sesame
RDF

Repository

2-4-URI

Figure 5.1: ArgDF System Architecture

features such as:

• Uploading RDF and RDFS single statements or complete files.

• Querying the repository using different query languages such as RQL

[29].

• Offering different RDF query results output formats: XML, HTML or

RDF statements. The XML output is in the form of tuples and literals.

The HTML output allows the user to navigate through the different RDF

graph nodes in a table format. As for the RDF statements output, it ex-

ports the querying results into an RDF file.

Other functionalities are also available, such as clearing the repository, extract-

ing statements from the repository as well as deleting them. The user has to

provide a valid administrative username and password to be able to process

41

CHAPTER 5: ARGDF: A SEMANTIC WEB-BASED ARGUMENTATION SYSTEM

repository operations on Sesame. The use of Sesame is expanding in the Se-

mantic Web development domain. It has proved to be efficient even in handling

huge RDF repositories tests.

5.2.2 Web Scripting: PHP

PHP [34] is a server side scripting language using embedded HTML. PHP stands

for “PHP: Hypertext Preprocessor.” I chose PHP as a scripting language for

ArgDF Web development for many reasons:

• Previous knowledge in PHP scripting.

• PHP is open source.

• Availability of descent documentation on its official website [34].

• Presence of PHP functions created to communicate with Sesame.

• Ability to process XSLT over XML document through PHP.

• Storing the returned values of URIs extracted from the RQL queries into

PHP global variables for passing the values from a page to another.

• PHP is available to download and use for free.

• Possibility to develop in a Microsoft Windows OS environment, and run-

ning on Unix platforms.

• Runs efficiently on different servers’ platforms such as Apache and IIS.

42

CHAPTER 5: ARGDF: A SEMANTIC WEB-BASED ARGUMENTATION SYSTEM

• PHP runs smoothly with MySQL database server which has also been

used in the development of ArgDF.

5.2.3 PHP - Sesame Communication: Phesame

For developing the ArgDF Web interface, communicating with Sesame through

PHP pages was of a primary importance. Phesame2 is a tool built for this spe-

cific reason. It is a PHP class containing a series of functions for communi-

cating with Sesame. Phesame has been initially developed for the HyperJour-

nal Project,3 a rapid application development environment, with features that

proved to fulfil the needed functionalities through the ArgDF interface:

• Connecting and logging into the RDF repository through HTTP by using

the function login().

• Selecting the Sesame repository to use through the function setSelectedRepository().

• Specifying the upload format of the RDF statements such as the RDFXML

format used in ArgDF. The function is setUploadFormat().

• Choosing the format of the query results. In ArgDF I use the XML format.

This can be set by using the function setResultFormat().

• Selecting the query language to use, such as RQL, is specified by using

the function: setQueryLanguage().

2http://www.hjournal.org/phesame
3http://www.hjournal.org

43

CHAPTER 5: ARGDF: A SEMANTIC WEB-BASED ARGUMENTATION SYSTEM

• Passing RQL queries and binding them to a PHP variable. The function

is: simpleQuery().

• Uploading RDF statements by using the uploadData() function.

The source code of the Phesame class has been made available for usage, and

has documentation notes and directions embedded with the source code. Phe-

same proved to be a kind of bridge between the PHP scripting language, and

the Sesame RDF engine.

5.2.4 Querying the ArgDF Repository: RQL

Queries in ArgDF are written using the RDF Query Language (RQL), which

is supported by Sesame. RQL queries are similar to databased queries and

take the form “Select-From-Where.” They operate based on matching the query

constraints with the values of the RDF graph in the repository. For example,

querying the ArgDF repository to extract the name of the schemes can be done

through the following RQL query:

select Scheme, PresumptiveInferenceScheme-hasSchemeName
from Scheme : kb:PresumptiveInferenceScheme kb:hasSchemeName

PresumptiveInferenceScheme-hasSchemeName
using namespace

rdf = http://www.w3.org/1999/02/22-rdf-syntax-ns# ,
rdfs = http://www.w3.org/2000/01/rdf-schema# ,
kb = http://protege.stanford.edu/kb#

Noting that the “Scheme” and “PresumptiveInferenceScheme-hasSchemeName”

are only variable names and thus can be simply replaced by any variable name.

44

CHAPTER 5: ARGDF: A SEMANTIC WEB-BASED ARGUMENTATION SYSTEM

I used such annotations to make the code more readable.

RQL has many features and there’s a turorial that can be found at the Sesame’s

website [44]. Queries are passed to the Sesame server using Phesame, and the

results are returned in XML format.

5.2.5 Rendering and Visualization: XSLT & XPath

XSLT is used to transform an XML document into a readable and presentable

format. XPath is the XML path language that helps in traversing XML doc-

uments to pick the needed information embraced between the tags. ArgDF

scripts internally return the results of the RDF queries into an XML document.

This XML document is subject to the application of XSLT and XPath to return

for the users the results on the web page, integrated into PHP. For example, if

we have the result of a query stored in a variable Result, here is the list of steps

to render the output for the end user:

1. Creation of the XSLT file containing the HTML formatting as well as XPath

expression defined to pick the needed results.

2. Defining a new PHP XSLT processor using the function xsltProcessor().

3. Importing the XSLT file using the PHP function importStyleSheet().

4. Transforming the result variable to a readable XML document by PHP

scripts using the function transformToXML() and binding it to the created

XSLT processor.

45

CHAPTER 5: ARGDF: A SEMANTIC WEB-BASED ARGUMENTATION SYSTEM

5. Finally printing the XSLT processor using the print() function of PHP, and

the rendered XML result is displayed in the designed format.

XSLT and XPath have also been used to enable hyperlinking the options in the

interface, and picking up the URI values to be used globally in the system.

5.2.6 URI Automatic Generation: MySQL Database

Every instance in ArgDF is required to have a unique identifier value. So for

example, if the URI of an instance has a value of ArgOnt_Instance_X, the next

URI value is ArgOnt_Intance_X+1. I tackled this issue by relying on the MySQL

database server, in which the latest number of the instance is stored. MySQL is

an open source database system that is in continuous development. Choosing

MySQL database is due to my familiarity with MySQL development, and to

MySQL’s ability to run on different platforms and its easy and efficient man-

agement through PHP. MySQL currently forms the backbone of many heavily

used Web-systems.

Whenever a new statement is to be uploaded to the repository, the value of the

counter in the MySQL table is extracted, and then concatenated to the prefix

ArgOnt_Instance_, which is used as the identifier of the new resource created,

and finally increment and store the value of the counter by one.

In brief, here’s the algorithm behind the URI generation:

If New RDF resource upload
Then connect to MySQL database

And extract the counter value = CountX

46

CHAPTER 5: ARGDF: A SEMANTIC WEB-BASED ARGUMENTATION SYSTEM

And Concatenate the Counter value to the prefix ArgOnt_Instance_
And new RDF resource URI = ArgOnt_Instance_CountX
Update MySQL database with the new CountX = CountX + 1

5.3 Creating New Arguments

In ArgDF a user can create new arguments based on argumentation schemes.

At the beginning, the system presents the list of schemes, and the user is al-

lowed to choose the scheme to which the argument belongs. Details of the ar-

gumentation scheme selected by the user are then retrieved from the repository,

and the way the argument should be built is displayed to users through sample

conclusions and premises. Then users will build the argument by pressing on

a button next to the corresponding sample, being a conclusion or a premise.

I now explain the background processes performed by the system while creat-

ing a new argument. The creation of a new argument involves many processes

running in parallel, ranging from the upload of RDF statements, to querying

the repository and displaying information to the end user. Figure 5.2 visualizes

the steps to give a clearer idea about the complete cycle.

Choosing the Argumentation Scheme

Whenever there is a screen in ArgDF in which there is a list of options from

which the user can choose from, 2 queries are applied to the repository: one to

extract the text and details of the resources, and another query to extract the

labels and URIs.

47

CHAPTER 5: ARGDF: A SEMANTIC WEB-BASED ARGUMENTATION SYSTEM

Repository Scheme Query

RA-Node Created in Repository

Scheme Details Query

Conclusion Created in Repository

Premise Created in Repository

Choose scheme

Scheme list

Create argument

Scheme details

Creation confirmed

Entering conclusion

Entering premises

ArgDF

Requesting conclusion

Requesting premises

Figure 5.2: New Argument Creation Cycle

This query is passed to the Sesame server using Phesame, and the returned re-

sult, in XML format, is then processed by 2 XSLT files including XPath formulas,

which prepare them to be displayed properly. The first XSLT manipulates the

hyperlink to enable certain subsequent argument navigation tasks by the user.

The second XSLT displays the name of the schemes in a table.

For example, the result of the scheme name RQL query presented in the pre-

vious section can be passed in XSLT to produce the HTML output shown in

Figure 5.3.

Figure 5.3: XSLT Table Output of Argument Schemes

Displaying the Argumentation Scheme Details

After choosing the scheme, the URI of the instance scheme is to be passed to the

next page, and then again 2 queries are performed: one extracts the conclusion’s

48

CHAPTER 5: ARGDF: A SEMANTIC WEB-BASED ARGUMENTATION SYSTEM

text of the scheme instance matching the URI of the one chosen by the user, and

the other extracts its premises’ text. The scheme details are then rendered using

2 XSLT files applied during all the argument creation process.

Creation of the RA-Node

The first thing ArgDF uploads to the repository during the creation of a new

argument is the RA-Node: the scheme node that holds the various argument

pieces together. This process happens automatically before creating the con-

clusion and the premises. A unique URI, extracted from the MySQL database,

is applied to the RA-Node instance, and is linked to the URI of the previously

chosen scheme using the fulfilsScheme relationship. This links the newly created

argument to the scheme chosen by the user. The RDF code uploaded to Sesame

for the creation of the RA-Node looks as the following:

<rdf:RDF>
<kb:RA-Node rdf:about="&kb;MySQL_URI_Generation"

rdfs:label="MySQL_URI_Generation">
<kb:fulfilsScheme rdf:resource="&kb;Selected_Scheme"/>

</kb:RA-Node>
</rdf:RDF>

Creation of the Conclusion and Premises

After uploading the RA-Node RDF statement, the user is redirected to enter the

conclusion and the premises of the argument. The system guides the user dur-

ing this process based on the selected scheme structure. Each argument conclu-

sion and premise entered by the user must fulfil the conclusion and premise

description of the scheme as shown in Figure 5.4. Also the conclusion and

premises instances get a unique URI, and have the edgeFromINode property

49

CHAPTER 5: ARGDF: A SEMANTIC WEB-BASED ARGUMENTATION SYSTEM

linked to the previously created RA-Node, and the RA-Node is updated to in-

clude the hasConclusion and hasPremise attributes. In addition to the edgeFromIN-

ode property, the conclusion is assigned a fulfilsConclusionDesc linked to the URI

of the scheme conclusion description, and the premise has supports linked to

the RA-Node and fulfilsPremiseDesc linked to the scheme premise description.

Figure 5.4: Argument Creation in ArgDF

5.4 Argument Extension

In this section, I describe the process of extending an existing argument, either

by supporting it, attacking it, or using an existing premise to be the premise of

a newly created argument.

5.4.1 Support/Attack of Existing Expressions

ArgDF allows users to support/attack existing expressions. The list of existing

expressions in the repository can be displayed as shown in Figure 5.5. The user

can choose the statement s/he wants to support or attack. The support and

attack of expressions can be done on premises as well as on conclusions. When

a user chooses to support an existing premise, this premise is both a premise in

one argument, and a conclusion in another one. Thus, the system allows for the

50

CHAPTER 5: ARGDF: A SEMANTIC WEB-BASED ARGUMENTATION SYSTEM

chaining of arguments.

To support existing expressions, the user can create supporting premises after

choosing a scheme to be used in the support. If the user chooses to attack a state-

ment, on the other hand, s/he is redirected to choose an appropriate scheme for

attack, and create a whole new argument with a conclusion (statement) attack-

ing the existing one, and backed by new premises.

Figure 5.5: Listing Existing Claims

5.4.2 Linking Existing Premises to a New Argument

While creating premises supporting a given conclusion through a new argu-

ment, the user can reuse existing premises from the system. This functionality

can be useful, for example, in Web-based applications that can allow users to

use existing Web content (e.g. a news article, a legal document) to support new

or existing claims. This way a premise can be used for 2 or more different argu-

ments. The resulting network structure is exemplified in Figure 5.6, in which a

single claim constitutes a premise for 2 arguments.

5.4.3 Attacking Arguments through Implicit Assumptions

As mentioned in Chapter 3, the implementation of the premises with presump-

tions and exceptions made the presuming mechanism programmatically possi-

51

CHAPTER 5: ARGDF: A SEMANTIC WEB-BASED ARGUMENTATION SYSTEM

ConclusionA

Argument A

PremiseA PremiseA
ConclusionBPremiseA

Argument B

PremiseB PremiseB
PremiseCPremiseB

ConclusionC

Argument C

PremiseCPremiseC

Figure 5.6: Interlinked Arguments Network

ble. For example if a user creating a new argument skips the creation of a certain

premise fulfilling a certain presumption, the implicit statements (extracted from

the corresponding scheme) aid in delivering the complete argument structure.

ArgDF allows the user to inspect existing claims by displaying all the arguments

in which this claim is involved: being a conclusion or a premise supporting a

conclusion. After opening an argument, exceptions and presumptions can be

visualized leading the way for an implicit attack of the argument either through

an exception (as in Figure 5.7), or through undermining a presumption (as in

Figure 5.8).

52

CHAPTER 5: ARGDF: A SEMANTIC WEB-BASED ARGUMENTATION SYSTEM

Figure 5.7: Implicit Attack Through an Exception in ArgDF

Figure 5.8: Implicit Attack Through Undermining a Presumption in ArgDF

53

CHAPTER 5: ARGDF: A SEMANTIC WEB-BASED ARGUMENTATION SYSTEM

5.5 Advanced Argument Search

Querying the Semantic Web presents powerful data extraction techniques. An

advanced search tool is implemented in ArgDF allowing the users to extract ar-

guments based on specific questions and following a specific argument scheme

such as: What are the premises supporting the statement “Brazil has the best

football team” and following the “Argument from Expert Opinion” scheme?

Figure 5.9 shows how this question can be formalized, and the answer to the

advanced search is visualized in figure 5.10.

Figure 5.9: ArgDF Advanced Search Tool

Figure 5.10: ArgDF Advanced Search Result

54

CHAPTER 5: ARGDF: A SEMANTIC WEB-BASED ARGUMENTATION SYSTEM

5.6 Creation of New Schemes

The user can also create new argumentation schemes through the interface of

ArgDF without having to modify the ontology itself.4 Figure 5.11 shows a

screen shot of the creation “Argument from Example” scheme in ArgDF.

Figure 5.11: Creating a new Scheme in ArgDF Example

Coding and programming details for building ArgDF are explored in depth in

appendix B.

4Recall that actual schemes are instances of the “Scheme” class.

55

Chapter 6

Conclusion and Open Issues

The work in this thesis comes out with a semantically rich system for authoring

and visualizing arguments. This system, ArgDF, meets the requirements for an

open argument representation on the Web that I presented in Chapter 2:

R1 Supporting the storing, creating, updating and querying of information struc-

tures. ArgDF is a Web-based system that supports the storage, creation,

update and querying of argument data structures based on Walton’s ar-

gument schemes. Though the prototype implementation employs a cen-

tralized server, the model is able to support large-scale distribution.

R2 Having Web-accessibility features and an open data repository. The arguments

are uploaded on a Sesame RDF repository which can be access and queried

openly through the Web and using a variety of RDF standard query lan-

guages.

R3 Relying on a language based on open standards, thus enabling collaborative de-

velopment of new tools and features. Arguments in the ArgDF system are ex-

56

CHAPTER 6: CONCLUSION AND OPEN ISSUES

pressed in the RDF Semantic Web annotation language, and based on the

RDF Schema ontology language, which are an open standard endorsed by

the W3C. A variety of software development tools can be used for taking

advantage of this.

R4 The semantics must employ a unified argumentation ontology. The AIF-RDF

ontology captures the main concepts in the AIF ontology [13], which is

the best current model for such an ontology.

R5 Supporting the representation, annotation and creation of arguments using a

variety of argumentation schemes. AIF-RDF preserves the AIF’s strong em-

phasis on scheme-based reasoning patterns, conflict patterns and prefer-

ence patterns, and is designed specifically to allow extended and modified

scheme sets to be accommodated.

ArgDF combines the features of a highly scalable argumentation system, and

at the same time a structured argument representation using different argu-

mentation patterns. The latter has tackled the limitation of many argumenta-

tion tools such as Parmenides where only one argumentation theory is applied,

and TruthMapping where arguments do not follow any specific argumenta-

tion pattern. On the contrary to the database limitations, for example used in

Parmenides, TruthMapping and others, the ArgDF’s ontology can be easily ex-

tended by manipulating the RDF statements stored in the open Sesame RDF

repository.

57

CHAPTER 6: CONCLUSION AND OPEN ISSUES

The end of this thesis left many open issues for ArgDF’s future enhancements

such as utilizing user preferences in the presentation, and possibly evaluation

of arguments. This helps in having better decision outcomes in a collaborating

team. Another enhancement that can be worked on is making use of descrip-

tion logic reasoning for inferring new things about the argument structure such

as the equivalence of two arguments etc. Investigating the issue of ArgDF serv-

ing as the platform for multi-agent systems (MAS) communication can also be

of an added value to the project. Targeting a wider end-user audience: users

interested in structured arguments for academic and analysis purposes, and

blogging users. The first one can be tackled by populating ArgDF with Arau-

caria’s set of schemes, making the structuring ways more diverse and serving

the academic audience in a better way. As for the latter, related to blogging

users, may be supported by offering the feature to have the normal blogs text

box, and having the text parsed by automated text processing, and extracted

arguments are inserted in ArgDF in a structured was as per the AIF ontology

requirements. Adding more querying features in ArgDF could offer users var-

ious ways of arguments’ extraction. Another possible area of work is the in-

corporation of large-scale argument evaluation on corpora of arguments on the

Web, which is now doable with the ability to store arguments over many repos-

itories. Finally plugging ArgDF to RDF visualization tools may improve the

navigation of complex argument structures.

The fusion of the AIF ontology, generic argumentation schemes based on Wal-

ton’s theory, and Semantic Web gave the birth of ArgDF, and opened the way

58

CHAPTER 6: CONCLUSION AND OPEN ISSUES

of new argument authoring and representation techniques.

59

Appendix A

ArgDF User Manual

In this appendix I present a reference manual for using ArgDF. The design of

the pages is still in its primitive stage. The home page of ArgDF is visualized in

Figure A.1. The main menu on the left includes the option for new arguments

creation, listing existing claims, manipulating argumentation schemes and an

advanced search utility. In order to have a concrete hands-on the features, I will

be using in this manual the football sports argument presented earlier.

Figure A.1: ArgDF Home Page

60

APPENDIX A: ARGDF USER MANUAL

A.1 Creating a New Argument

When the user chooses to create a new argument, s/he is redirected to choose

the scheme the argument is fulfilling. Figure A.2 includes only one scheme. By

the end of the appendix I show how to populate the repository with additional

schemes.

Figure A.2: Argument Creation Scheme Choice

After choosing the scheme by pressing the “create button,” the user is notified

that s/he is in process of creating a new argument as in Figure A.3, with the

details of the scheme selected.

Figure A.3: New Argument Notification

After the screen in Figure A.3, until the end of the process, the details of the

scheme are always displayed on the screen. In order to create the argument’s

conclusion and premises, the user should press next to the corresponding scheme

part to be fulfilled as shown in Figure A.4.

Figure A.5 displays how a user enters the conclusion, and at the same time s/he

61

APPENDIX A: ARGDF USER MANUAL

Figure A.4: Argument Parts Creation

is able to see which statement it’s fulfilling.

Figure A.5: Entering the Argument’s Conclusion

Similarly to Figures A.4 and A.5 the premises are created to finally come up

with a full argument as in Figure A.6.

Figure A.6: Argument Creation Ending

Claims list (conclusions and premises) can be listed in ArgDF, allowing users to

support, attack and inspect them. Figure A.7 visualizes this feature.

A.2 Explicitly Attacking an Existing Claim

After listing the claims, users can explicitly attack existing claims. This is done

by pressing the attack button next to the claim to be attacked as in Figure A.7.

Then users are redirected to choose the scheme of the attacking argument. In

62

APPENDIX A: ARGDF USER MANUAL

Figure A.7: Claims List in ArgDF

this example the argument from expert opinion scheme is also used, and finally the

screen in Figure A.8 shows up, and the conclusion and premises of the attacking

argument are created as in the previous section.

Figure A.8: Attacking Existing Claim

A.3 Supporting an Existing Claim

When a user chooses to support an existing claim, the selected claim appears

on the top of the screen (Figure A.9) and premises are directly entered.

Figure A.9: Supporting an Existing Claim

63

APPENDIX A: ARGDF USER MANUAL

A.4 Inspecting an Existing Claim and Implicit At-

tacks

The claim inspection visualizes to the user in which argument this claim is ap-

pearing, being a conclusion or a premise. For example inspecting Allen is an

expert in sports shows that it supports the conclusion Brazil has the best football

team, and users can open the argument (Figure A.10).

Figure A.10: Opening an Existing Argument

The opened argument is displayed as well as the scheme it fulfils (Figure A.11),

with the possibility to show the exceptions and presumptions.

Figure A.11: Existing Argument Details

Exceptions expanded in Figure A.12 can be used for attack and get a notification

as in Figure A.13.

In the screen of Figure A.14 the user enters the exception.

64

APPENDIX A: ARGDF USER MANUAL

Figure A.12: Existing Argument Exceptions Details

Figure A.13: Attacking Through Exception Confirmation

Figure A.14: Entering the Exception

65

APPENDIX A: ARGDF USER MANUAL

Figure A.15 shows the updated argument with its implicit attack through ex-

ception.

Figure A.15: Argument Exceptions Updated

Undermining an argument’s presumption process, which is also an implicit at-

tack, is visualized in Figures A.16, A.17 and A.18.

Figure A.16: Implicit Argument Attack Through Presumptions - 1

Figure A.19 displays the argument with its undermining presumptions.

66

APPENDIX A: ARGDF USER MANUAL

Figure A.17: Implicit Argument Attack Through Presumptions - 2

Figure A.18: Entering the Undermining Presumption

Figure A.19: Undermining Presumption Displayed

67

APPENDIX A: ARGDF USER MANUAL

A.5 Using Existing Premises in New Arguments

Users can, while creating new arguments, pick an existing premise from the

repository and link it to their new argument as shown in Figure A.20. The list

displays only the available premises (Figure A.21).

Figure A.20: Using an Existing Premise

Figure A.21: List of Existing Premises

A.6 Argumentation Schemes Manipulation

Argument schemes details can be checked by pressing on the Argument Schemes

button in the main menu, then pressing on the details button as in Figure A.22.

Here I display the creation of the Argument from Example Walton scheme.

Figure A.22: Argumentation Scheme Details

68

APPENDIX A: ARGDF USER MANUAL

To create a new presumptive inference scheme, the link New Presumptive In-

ference Scheme should be pressed and users are redirected to enter the scheme

name (Figure A.23).

Figure A.23: Entering the New Scheme Name

Then the user is automatically redirected to enter the conclusion description as

in Figure A.24.

Figure A.24: Entering the New Scheme Conclusion

Finally the screen of Figure A.25 is displayed, enabling the creation of the new

scheme premises, entailed or generic presumptions, and exceptions.

Clicking on the Entails Presumption next to the corresponding premise in Figure

A.25, takes the user to enter the specific presumption as in Figure A.26.

The Create Generic Scheme Presumptions link creates presumptions that are not

entailed by any premise. Exceptions are created by clicking on the Create Scheme

Exceptions link and the user is redirected to create the conflict scheme by which

the new exception abides (Figure A.27), and its premises description (excep-

tions) as in Figure A.28.

Finally the way the newly created Argument from Example scheme looks is visu-

69

APPENDIX A: ARGDF USER MANUAL

Figure A.25: Entering the New Scheme Premises

Figure A.26: Entering the New Scheme Entailed Presumption

alized in Figure A.29.

Figure A.27: Entering New Conflict Scheme Name

70

APPENDIX A: ARGDF USER MANUAL

Figure A.28: Entering Conflict Scheme Corresponding Premise

Figure A.29: New Scheme Creation Final Screen

71

Appendix B

Building ArgDF in Depth

In this appendix, I present technical details about ArgDF implementation. De-

tails of design and coding issues are explored, ranging from the data entry level,

to the querying and output results level.

B.1 Phesame for PHP and Sesame communication

The purpose of using Phesame in ArgDF was to have a set of functions facili-

tating the interaction between PHP and Sesame. Part of the required Phesame

functions have been used and proved to be a benefit to the ArgDF project.

B.1.1 Opening the Sesame Connection

In order to process any Sesame command, like uploading, creating or querying

RDF statements, a connection should be opened. Opening a new connection is

done using the following function, accepting the value of the path to the Sesame

servlet as a variable:

72

APPENDIX B: BUILDING ARGDF IN DEPTH

$phesame = new Phesame($sesame_url)

where $sesame_url is the PHP variable and should contain the path to the Sesame

servlet repository on the Apache Tomcat Server. If the Tomcat server is installed

locally, it should be for example:

$sesame_url = "localhost:8080/sesame/servlets".

After opening the connection, a valid user name and password having admin-

istrative privileges to manipulate the repository should be provided. The login

function accepting 2 variables will do the job:

$login = "testuser"
$passwd = "opensesame"
$phesame->login($login,$passwd)

B.1.2 Setting the RDF Repository & Input/Output Parameters

After opening the connection with Sesame, the repository to work on should be

specified through a function called setSelectedRepository that accepts one value

being the repository name. Our code as an example:

$phesame->setSelectedRepository(‘mem-rdfs-db’)

Where ‘mem-rdfs-db’ is the repository that ArgDF uses.

Phesame allows setting the format of the uploading RDF statements format.

In ArgDF, the upload is done using the RDF/XML format. This is set in the

function setUploadFormat, accepting one parameter being format value:

$phesame->setUploadFormat(‘rdfxml’)

73

APPENDIX B: BUILDING ARGDF IN DEPTH

Also the RDF queries’ results can be set through the function setResultFormat

that accepts the value of the format. In ArgDF the output used is XML, as the

result has been later on processed in XSLT to display results to the final user in

the required design:

$phesame->setResultFormat(‘xml’)

The querying language used in the project is RQL. This can also be set through

Phesame by using the setQueryLanguage function:

$phesame->setQueryLanguage(‘RQL’)

In the following sections, I present more Phesame functions on a case by case

basis.

B.2 Writing in the RDF Repository & Uploading RA-

Node Example

After opening the connection with Sesame and setting the upload format, RDF

statements to be uploaded through the PHP interface are stored inside a PHP

variable called for example $data. Then these RDF statements are uploaded to

the repository using the uploadData function. As an example, let’s say that we

need to create a new RA-Node having a URI as ArgOnt_Instance_X. As our up-

loading selected language is RDF/XML, our uploading data should follow the

RDF/XML syntax. The variable $data includes all the RDF details representing

the code of the RA-Node to be uploaded. In order to do that, the below $data

PHP variable is bound to the RDF statement in the following way:

74

APPENDIX B: BUILDING ARGDF IN DEPTH

$data =
<!DOCTYPE rdf:RDF [
<!ENTITY rdf ‘http://www.w3.org/1999/02/22-rdf-syntax-ns#’>
<!ENTITY kb ‘http://protege.stanford.edu/kb#’>
<!ENTITY rdfs ‘http://www.w3.org/2000/01/rdf-schema#’>]>
<rdf:RDF xmlns:rdf=\"&rdf;\" xmlns:kb=\"&kb;\" xmlns:rdfs=\"&rdfs;\">

<kb:RA-Node rdf:about=\"&kb;ArgOnt_Instance_X\" rdfs:label=
\"ArgOnt_Instance_X\">

</kb:RA-Node>
</rdf:RDF>

At the end, the variable $data is uploaded in the following manner:

$phesame->uploadData($data,$verifydata=true,$showwarnings=false,

$shownotices=false)

Where the parameter $verifydata is set to true in order to check the data before

uploading.

In the Sesame interface menu, there’s a function to extract data from the repos-

itory. After the upload of the previous RA-Node, the extracted data from the

Sesame RDF repository shows the presence of the following RDF statement:

<rdf:Description rdf:about="http://protege.stanford.edu/kb#ArgOnt_Instance_X">
<rdf:type rdf:resource="http://protege.stanford.edu/kb#RA-Node"/>
<rdfs:label>ArgOnt_Instance_X</rdfs:label>
</rdf:Description>

B.3 RQL and Premises List Query Example

Querying the ArgDF repository has been done using RQL. Passing queries to

Sesame is also handled through the Phesame functions. For example if we need

to extract the list of all the premises’ text available in the repository. The query

is written in a PHP variable, then passed to Sesame using the simpleQuery()

function:

75

APPENDIX B: BUILDING ARGDF IN DEPTH

$serql =
select INode, INode-text
from {INode : kb:Premise} kb:text {INode-text}
using namespace

rdf = http://www.w3.org/1999/02/22-rdf-syntax-ns#,
rdfs = http://www.w3.org/2000/01/rdf-schema#,
kb = http://protege.stanford.edu/kb#

Then the query is passed to Phesame in the following way, and the result is

stored in a variable: $result = $phesame->simpleQuery($serql)

The $result variable is filled with XML syntax code. For example, the returned

premises query result can be:

<?xml version="1.0" encoding="UTF-8" ?>
<tableQueryResult>

<header>
<columnName>INode-text</columnName>

</header>
<tuple>

<literal>Premise A Text</literal>
</tuple>
<tuple>

<literal>Premise B Text</literal>
</tuple>
<tuple>
<literal>Premise C Text</literal>

</tuple>
</tableQueryResult>

The next step is to visualize the result and present it in a user friendly way

through the user interface.

B.4 Transforming XML Query Output through XSLT

In this section I present how the results are visualized in the browser interface

to present an output similar to the one in Figure 5.3. Previously we saw how

to store the result of a query in a PHP variable called $result containing XML

76

APPENDIX B: BUILDING ARGDF IN DEPTH

syntax code. Visualization is done after processing the result into an XSLT file

and rendering it on the HTML page.

The XSLT as well as XPath expression code for creating a table filled with the

literal values is:

<xsl:for-each select="tableQueryResult/tuple/literal">
<table width="499" border="1" cellspacing="0" cellpadding="2">

<tr>
<th width="385" scope="col"><div align="left" class="style2">

<xsl:value-of select="."/></div></th>
</tr>

</table>
</xsl:for-each>

HTML design coding has been added to create a better interface. In order to

process the XML document using XSLT, PHP offers this functionality by creat-

ing a new XSLT processor:

$xslt = new xsltProcessor

Then specifying the XSLT file to load into the new XSLT processor.

$xslt->importStyleSheet(DomDocument::load(‘file_name.xsl’))

The query result contained in the $result variable is processed using the trans-

formToXML() PHP function:

$xslt->transformToXML(DomDocument::loadXML($result))

Finally the processed XML is visualized on the interface by the print PHP func-

tion:

print $xslt

77

APPENDIX B: BUILDING ARGDF IN DEPTH

B.5 Creating a New Argument Full Cycle

In this section I go through the technical details of a full argument creation cy-

cle. Figure 5.2 shows the argument creation cycle. The user starts by choosing

the scheme s/he that the argument fulfils. Then the scheme details are dis-

played, and the RA-Node, connecting the different parts of the argument is

created. At the end, the user enters the conclusion and premises fulfilling the

scheme parts. While entering the premises and conclusion, the argument de-

tails are instantly updated.

B.5.1 Choosing the Argumentation Scheme

The first step of building a new argument is to choose an argumentation scheme.

There is a dual repository query to extract the scheme names and scheme labels

(instance number).

Query 1: Picking up the scheme names

select Scheme, PresumptiveInferenceScheme-hasSchemeName
from {Scheme : kb:PresumptiveInferenceScheme} kb:hasSchemeName

{PresumptiveInferenceScheme-hasSchemeName}
using namespace

rdf = http://www.w3.org/1999/02/22-rdf-syntax-ns#,
rdfs = http://www.w3.org/2000/01/rdf-schema#,
kb = http://protege.stanford.edu/kb#

Query 2: Picking up the scheme labels

select Scheme, PresumptiveInferenceScheme-label
from {Scheme : kb:PresumptiveInferenceScheme} rdfs:label

{PresumptiveInferenceScheme-label}
using namespace

rdf = http://www.w3.org/1999/02/22-rdf-syntax-ns# ,
rdfs = http://www.w3.org/2000/01/rdf-schema#,
kb = http://protege.stanford.edu/kb#

78

APPENDIX B: BUILDING ARGDF IN DEPTH

After the scheme querying, 2 XSLT files are applied to the results of the queries.

One XSLT displays the name of the scheme, the other XSLT is used to pick the

URI value, and insert it into the hyperlink URL variable, so that it can be used

in the next step while creating the RA-Node.

B.5.2 Creation of the RA-Node

After choosing the scheme, the repository is queried again to show the details

of the scheme selected and a new RA-Node is uploaded to the RDF repository.

Showing the scheme details requires doing a dual query on the repository; One

to get the conclusion, and another one to get the list of premises details.

Extracting the conclusion and premises descriptions of the scheme necessitates

a nested RQL query, as we need to get the description details that are inside

the conclusion or premises which are inside the scheme matching the scheme

number that is now available in the URL using the $_GET PHP function.

Getting the conclusion of the scheme selected query

select ConclusionDesc-hasDescription
from {ConclusionDesc} kb:hasDescription {ConclusionDesc-hasDescription}
where ConclusionDesc in

select PresumptiveInferenceScheme-hasConclusionDescription
from {PresumptiveInferenceScheme} kb:hasSchemeName

{PresumptiveInferenceScheme-hasSchemeName},
{PresumptiveInferenceScheme} rdfs:label {PresumptiveInferenceScheme-label},
{PresumptiveInferenceScheme} kb:hasConclusionDescription

{PresumptiveInferenceScheme-hasConclusionDescription}
where PresumptiveInferenceScheme-label like \"{$_GET[‘scheme’]}\"
using namespace

rdf = http://www.w3.org/1999/02/22-rdf-syntax-ns#,
rdfs = http://www.w3.org/2000/01/rdf-schema#,
kb = http://protege.stanford.edu/kb#

A similar query is used to extract the premises’ description of the schemes.

79

APPENDIX B: BUILDING ARGDF IN DEPTH

After the query, 2 XSLT files process the results and display them to the user so

that s/he is able to see how to structure the new argument created.

The RA-Node to be created should have the following attributes:

• fulfilsScheme: Which has the value of the previously chosen scheme

• A new unique label (URI): The corresponding URI is bound to the value of

the counter extracted from the MySQL database. In the background of

this process, the value of the counter in MySQL is incremented by one.

The RA-Node RDF code to be uploaded:

$data =
<!DOCTYPE rdf:RDF [
<!ENTITY rdf ‘http://www.w3.org/1999/02/22-rdf-syntax-ns#’>
<!ENTITY kb ‘http://protege.stanford.edu/kb#’>
<!ENTITY rdfs ‘http://www.w3.org/2000/01/rdf-schema#’>]>
<rdf:RDF xmlns:rdf=\"&rdf;\" xmlns:kb=\"&kb;\" xmlns:rdfs=\"&rdfs;\">
%%%
%%RA-Node Creation RDF Statement

<kb:RA-Node rdf:about=\"&kb;ArgOnt_Instance_{$row_ArgCount[‘count_A’]}
rdfs:label=\"ArgOnt_Instance_{$row_ArgCount[‘count_A’]}\">

<kb:fulfilsScheme rdf:resource=\"&kb;{$_GET[‘scheme’]}\"/>
</kb:RA-Node>

</rdf:RDF>

In the above RDF statement, ArgOnt_Instance_$row_ArgCount[‘count_A’] is

the instance label and URI value. The $row_ArgCount[‘count_A’] is the value

of the counter extracted from the queried MySQL database.

B.5.3 Creation of the Conclusion & Premises

Now that a new RA-Node is uploaded to the repository, the user is redirected to

enter the conclusion & premises that are all linked to the RA-Node of the argu-

80

APPENDIX B: BUILDING ARGDF IN DEPTH

ment. As in the previous step, the scheme details is also queried and displayed

to the user.

Entering the conclusion requires the following:

1. Upload of the conclusion’s RDF statement with the following attributes:

• edgeFromINode: having the value of the previously created RA-Node’s

URI.

• fulfilsConclusionDesc: having the value of the selected scheme’s con-

clusion description to be fulfilled.

• label and URI with a unique value.

2. Update of the previously created RA-Node with the following attributes:

• hasConclusion: having the value of the current conclusion’s URI.

• edgeFromSNode: having the value of the current conclusion’s URI.

The RDF/ XML code of the conclusion to upload:

$data =
<!DOCTYPE rdf:RDF [
<!ENTITY rdf ‘http://www.w3.org/1999/02/22-rdf-syntax-ns#’>
<!ENTITY kb ‘http://protege.stanford.edu/kb#’>
<!ENTITY rdfs ‘http://www.w3.org/2000/01/rdf-schema#’>]>
<rdf:RDF xmlns:rdf=\"&rdf;\" xmlns:kb=\"&kb;\" xmlns:rdfs=\"&rdfs;\">
%%%
%%Conclusion RDF Statement

<kb:Conclusion
rdf:about=\"&kb;ArgOnt_Instance_{$row_ArgCount[‘count_A’]}\"
kb:text=\"{$_POST[‘conclusion’]}\"
rdfs:label=\"ArgOnt_Instance_{$row_ArgCount[‘count_A’]}\">

<kb:edgeFromINode rdf:resource=
\"&kb;{$_SESSION[‘MM_Current_RA’]}\"/>

<kb:fulfilsConclusionDesc rdf:resource=
\"&kb;{$_GET[‘conclusion_fulfils’]}\"/>

</kb:Conclusion>
%%%

81

APPENDIX B: BUILDING ARGDF IN DEPTH

%%RA-Node Update RDF Statement
<kb:RA-Node rdf:about=\"&kb;{$_SESSION[‘MM_Current_RA’]}\">

<kb:hasConclusion rdf:resource=
\"&kb;ArgOnt_Instance_{$row_ArgCount[‘count_A’]}\"/>

<kb:edgeFromSNode rdf:resource=
\"&kb;ArgOnt_Instance_{$row_ArgCount[‘count_A’]}\"/>

</kb:RA-Node>
</rdf:RDF>

The PHP variable $_POST[‘conclusion’] is used to extract the value from the in-

terface textbox (text entered by the user that includes the content of the conclu-

sion). The variable $_SESSION[‘MM_Current_RA’] is a global session variable,

used to store the value of the previously created RA-Node. Session variables in

PHP maintain the values while navigating from one page to another.

$_GET[‘conclusion_fulfils’] extracts the URI value of the selected scheme con-

clusion to fulfil from the URL.

Entering the premises requires the following:

Premises are created following the similar steps above of the conclusion cre-

ation. They differ in the attributes’ type and that a user can create as many

premises as s/he wants fulfilling a specific scheme premise description.

The premises created is linked to the RA-Node, leading to the following repos-

itory update:

1. Creation and upload of the premises’ RDF statements having the below

attributes:

• edgeFromINode: with the value of the previously created RA-Node’s

URI.

82

APPENDIX B: BUILDING ARGDF IN DEPTH

• Supports: also having the value of the previously created RA-Node’s

URI.

• fulfilsPremiseDesc: with the selected scheme’s premise description URI

to be fulfilled as value.

• label and URI of the premise with a unique value.

2. Accordingly the created RA-Node should be updated in the system:

• hasPremise: having the current premise’s URI as value.

• edgeFromSNode: having the current premise’s URI as value.

This step includes the upload of the following RDF/ XML statements code:

$data =
<!DOCTYPE rdf:RDF [
<!ENTITY rdf ‘http://www.w3.org/1999/02/22-rdf-syntax-ns#’>
<!ENTITY kb ‘http://protege.stanford.edu/kb#’>
<!ENTITY rdfs ‘http://www.w3.org/2000/01/rdf-schema#’>]>
<rdf:RDF xmlns:rdf=\"&rdf;\" xmlns:kb=\"&kb;\" xmlns:rdfs=\"&rdfs;\">
%%%
%%Premise RDF Statement

<kb:Premise rdf:about=\"&kb;ArgOnt_Instance_{$row_ArgCount[‘count_A’]}\"
kb:text=\"{$_POST[‘premise’]}\"
rdfs:label=\"ArgOnt_Instance_{$row_ArgCount[‘count_A’]}\">

<kb:edgeFromINode rdf:resource=
\"&kb;{$_SESSION[‘MM_Current_RA’]}\"/>

<kb:supports rdf:resource=
\"&kb;{$_SESSION[‘MM_Current_RA’]}\"/>

<kb:fulfilsPremiseDesc rdf:resource=
\"&kb;{$_SESSION[‘MM_Prem_Fulfils’]}\"/>

</kb:Premise>
%%%
%%RA-Node Update RDF Statement

<kb:RA-Node rdf:about=\"&kb;{$_SESSION[‘MM_Current_RA’]}\">
<kb:hasPremise rdf:resource=

\"&kb;ArgOnt_Instance_{$row_ArgCount[‘count_A’]}\"/>
<kb:edgeFromSNode rdf:resource=

\"&kb;ArgOnt_Instance_{$row_ArgCount[‘count_A’]}\"/>
</kb:RA-Node>

</rdf:RDF>

83

APPENDIX B: BUILDING ARGDF IN DEPTH

B.6 Creating a New Argumentation Scheme

The necessary steps for scheme creation in ArgDF are:

1. Creation of the presumptive inference scheme with the following attributes:

• hasSchemeName: Which is a literal of type string taking the value of

the scheme name text box entered by the user.

• Unique label and URI: With an automatically generated value.

The corresponding RDF/ XML code of the scheme creation:

$data =
<!DOCTYPE rdf:RDF [
<!ENTITY rdf ‘http://www.w3.org/1999/02/22-rdf-syntax-ns#’>
<!ENTITY a ‘http://protege.stanford.edu/system#’>
<!ENTITY kb ‘http://protege.stanford.edu/kb#’>
<!ENTITY rdfs ‘http://www.w3.org/2000/01/rdf-schema#’>]>
<rdf:RDF xmlns:rdf=\"&rdf;\" xmlns:kb=\"&kb;\" xmlns:rdfs=\"&rdfs;\">

<kb:PresumptiveInferenceScheme
rdf:about=\"&kb;ArgOnt_Instance_{$row_ArgCount[‘count_A’]}\"
rdfs:label=\"ArgOnt_Instance_{$row_ArgCount[‘count_A’]}\"
kb:hasSchemeName=\"{$_POST[‘sname’]}\">

</kb:PresumptiveInferenceScheme>
</rdf:RDF>

2. Creation of the scheme’s conclusion and premises descriptions. This will

result in the repository change by updating the previously created in-

ference scheme and adding the attributes hasConclusionDescription and

hasPremiseDescription respectively. Conclusion and premises descriptions

are also created, linked to the scheme, and having the attribute hasDescrip-

tion representing the information inside. I am not going in the details of

this process as it’s similar to the one in the new argument creation.

84

APPENDIX B: BUILDING ARGDF IN DEPTH

3. Creation of schemes also involves entering the according presumptions

and exceptions. Presumptions that are entailed from certain premises are

created by uploading the following RDF statement:

$data =
<!DOCTYPE rdf:RDF [
<!ENTITY rdf ‘http://www.w3.org/1999/02/22-rdf-syntax-ns#’>
<!ENTITY kb ‘http://protege.stanford.edu/kb#’>
<!ENTITY rdfs ‘http://www.w3.org/2000/01/rdf-schema#’>]>
<rdf:RDF xmlns:rdf=\"&rdf;\" xmlns:kb=\"&kb;\" xmlns:rdfs=\"&rdfs;\">
%%%
%%Presumtion RDF Statement

<kb:Presumption
rdf:about=\"&kb;ArgOnt_Instance_{$row_ArgCount[‘count_A’]}\"
kb:hasDescription=\"{$_POST[‘presumption’]}\"
rdfs:label=\"ArgOnt_Instance_{$row_ArgCount[‘count_A’]}\">

</kb:Presumption>
%%%
%%Premise Description RDF Statement Update for entailement

<kb:PremiseDesc rdf:about=\"&kb;{$_GET[‘premisedesc_entails’]}\">
<kb:entails

rdf:resource=\"&kb;ArgOnt_Instance_{$row_ArgCount[‘count_A’]}\"/>
</kb:PremiseDesc>

%%%
%%Presumptive inference scheme RDF Statement update

<kb:PresumptiveInferenceScheme
rdf:about=\"&kb;{$_SESSION[‘MM_Current_Scheme’]}\">

<kb:hasPresumption
rdf:resource=\"&kb;ArgOnt_Instance_{$row_ArgCount[‘count_A’]}\"/>

</kb:PresumptiveInferenceScheme>
</rdf:RDF>

The generic scheme’s presumptions are the one that are not entailed by

premises. The same RDF code abode is used, but without the entails rela-

tionship.

The exceptions creation involves 2 steps. The first is for creating the con-

flict scheme with the hasSchemeName attribute to capture the conflict scheme

name, followed by the exception (premises supporting the conflict scheme)

description creation. Finally the presumptive scheme is updated to be

linked to the newly created conflict scheme. The second is for the creation

85

APPENDIX B: BUILDING ARGDF IN DEPTH

of the exception as premise of the conflict scheme newly created.

The corresponding RDF code of the process:

$data =
<!DOCTYPE rdf:RDF [" .
<!ENTITY rdf ‘http://www.w3.org/1999/02/22-rdf-syntax-ns#’>" .
<!ENTITY kb ‘http://protege.stanford.edu/kb#’>" .
<!ENTITY rdfs ‘http://www.w3.org/2000/01/rdf-schema#’>]>" .
<rdf:RDF xmlns:rdf=\"&rdf;\" xmlns:kb=\"&kb;\" xmlns:rdfs=\"&rdfs;\">" .
%%%
%%Exception of type PremiseDesc is created

<kb:PremiseDesc
rdf:about=\"&kb;ArgOnt_Instance_{$row_ArgCount[‘count_A’]}\"
kb:hasDescription=\"{$_POST[‘conclusion’]}\"
rdfs:label=\"ArgOnt_Instance_{$row_ArgCount[‘count_A’]}\">" .

</kb:PremiseDesc>" .
%%%
%%Conflict scheme linked to the exception

<kb:ConflictScheme rdf:about=\"&kb;{$_GET[‘conflict_scheme’]}\"> " .
<kb:hasPremiseDescription

rdf:resource=\"&kb;ArgOnt_Instance_{$row_ArgCount[‘count_A’]}\"/>" .
</kb:ConflictScheme>" .

%%%
%%Presumptive inference scheme RDF Statement update with hasException

<kb:PresumptiveInferenceScheme
rdf:about=\"&kb;{$_SESSION[‘MM_Current_Scheme’]}\"> " .

<kb:hasException rdf:resource=\"&kb;{$_GET[‘conflict_scheme’]}\"/>" .
</kb:PresumptiveInferenceScheme>" .

</rdf:RDF>";

I will not go into coding details of other processes, as they are similar to the

ones I already presented.

86

Appendix C

Full AIF-RDF RDFS Ontology Code

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:kb="http://protege.stanford.edu/kb#"
xmlns:a="http://protege.stanford.edu/system#">

<rdf:Description rdf:about="http://protege.stanford.edu/kb#edgeFromINode">
<rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/>
<rdfs:label>edgeFromINode</rdfs:label>
<rdfs:domain rdf:resource="http://protege.stanford.edu/kb#I-Node"/>
<rdfs:range rdf:resource="http://protege.stanford.edu/kb#S-Node"/>
<rdfs:subPropertyOf rdf:resource="http://protege.stanford.edu/kb#edge"/>

</rdf:Description>

<rdf:Description rdf:about="http://protege.stanford.edu/kb#ConclusionDesc">
<rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
<rdfs:label>ConclusionDesc</rdfs:label>
<rdfs:subClassOf rdf:resource="http://protege.stanford.edu/kb#Form"/>

</rdf:Description>

<rdf:Description rdf:about="http://protege.stanford.edu/kb#hasPremise">
<rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/>
<a:minCardinality>1</a:minCardinality>
<rdfs:label>hasPremise</rdfs:label>
<rdfs:range rdf:resource="http://protege.stanford.edu/kb#Premise"/>
<rdfs:domain rdf:resource="http://protege.stanford.edu/kb#RA-Node"/>
<rdfs:subPropertyOf rdf:resource="http://protege.stanford.edu/kb#edgeFromSNode"/>
<a:inverseProperty rdf:resource="http://protege.stanford.edu/kb#supports"/>

</rdf:Description>

<rdf:Description rdf:about="http://protege.stanford.edu/kb#RA-Node">
<rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
<rdfs:label>RA-Node</rdfs:label>
<rdfs:subClassOf rdf:resource="http://protege.stanford.edu/kb#S-Node"/>

</rdf:Description>

<rdf:Description rdf:about="http://protege.stanford.edu/kb#hasPremiseDescription">
<rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/>
<a:minCardinality>1</a:minCardinality>
<rdfs:label>hasPremiseDescription</rdfs:label>
<rdfs:range rdf:resource="http://protege.stanford.edu/kb#PremiseDesc"/>
<rdfs:domain rdf:resource="http://protege.stanford.edu/kb#Scheme"/>

</rdf:Description>

87

APPENDIX C: FULL AIF-RDF RDFS ONTOLOGY CODE

<rdf:Description rdf:about="http://protege.stanford.edu/kb#hasException">
<rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/>
<rdfs:label>hasException</rdfs:label>
<rdfs:range rdf:resource="http://protege.stanford.edu/kb#ConflictScheme"/>
<rdfs:domain rdf:resource="http://protege.stanford.edu/kb#PresumptiveInferenceScheme"/>

</rdf:Description>

<rdf:Description rdf:about="http://protege.stanford.edu/kb#Form">
<rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
<rdfs:label>Form</rdfs:label>
<rdfs:subClassOf rdf:resource="http://protege.stanford.edu/kb#Node"/>

</rdf:Description>

<rdf:Description rdf:about="http://protege.stanford.edu/kb#isAttacked">
<rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/>
<rdfs:label>isAttacked</rdfs:label>
<rdfs:domain rdf:resource="http://protege.stanford.edu/kb#CA-Node"/>
<rdfs:range rdf:resource="http://protege.stanford.edu/kb#Conclusion"/>
<a:inverseProperty rdf:resource="http://protege.stanford.edu/kb#attacks"/>
<rdfs:subPropertyOf rdf:resource="http://protege.stanford.edu/kb#edgeFromINode"/>

</rdf:Description>

<rdf:Description rdf:about="http://protege.stanford.edu/kb#hasDescription">
<rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/>
<a:maxCardinality>1</a:maxCardinality>
<a:minCardinality>1</a:minCardinality>
<rdfs:label>hasDescription</rdfs:label>
<rdfs:domain rdf:resource="http://protege.stanford.edu/kb#Form"/>
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/>

</rdf:Description>

<rdf:Description rdf:about="http://protege.stanford.edu/kb#hasConclusionDescription">
<rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/>
<a:maxCardinality>1</a:maxCardinality>
<rdfs:label>hasConclusionDescription</rdfs:label>
<rdfs:range rdf:resource="http://protege.stanford.edu/kb#ConclusionDesc"/>
<rdfs:domain rdf:resource="http://protege.stanford.edu/kb#Scheme"/>

</rdf:Description>

<rdf:Description rdf:about="http://protege.stanford.edu/kb#RuleScheme">
<rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
<rdfs:label>RuleScheme</rdfs:label>
<rdfs:subClassOf rdf:resource="http://protege.stanford.edu/kb#Scheme"/>

</rdf:Description>

<rdf:Description rdf:about="http://protege.stanford.edu/kb#PA-Node">
<rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
<rdfs:label>PA-Node</rdfs:label>
<rdfs:subClassOf rdf:resource="http://protege.stanford.edu/kb#S-Node"/>

</rdf:Description>

<rdf:Description rdf:about="http://protege.stanford.edu/kb#S-Node">
<rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
<rdfs:label>S-Node</rdfs:label>
<rdfs:subClassOf rdf:resource="http://protege.stanford.edu/kb#Node"/>

</rdf:Description>

<rdf:Description rdf:about="http://protege.stanford.edu/kb#PreferenceScheme">
<rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
<rdfs:label>PreferenceScheme</rdfs:label>
<rdfs:subClassOf rdf:resource="http://protege.stanford.edu/kb#Scheme"/>

</rdf:Description>

<rdf:Description rdf:about="http://protege.stanford.edu/kb#PremiseDesc">
<rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
<rdfs:label>PremiseDesc</rdfs:label>
<rdfs:subClassOf rdf:resource="http://protege.stanford.edu/kb#Form"/>

</rdf:Description>

88

APPENDIX C: FULL AIF-RDF RDFS ONTOLOGY CODE

<rdf:Description rdf:about="http://protege.stanford.edu/kb#InductiveInference">
<rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
<rdfs:label>InductiveInference</rdfs:label>
<rdfs:subClassOf rdf:resource="http://protege.stanford.edu/kb#RuleScheme"/>

</rdf:Description>

<rdf:Description rdf:about="http://protege.stanford.edu/kb#ConflictScheme">
<rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
<rdfs:label>ConflictScheme</rdfs:label>
<rdfs:subClassOf rdf:resource="http://protege.stanford.edu/kb#Scheme"/>

</rdf:Description>

<rdf:Description rdf:about="http://protege.stanford.edu/kb#Conclusion">
<rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
<rdfs:label>Conclusion</rdfs:label>
<rdfs:subClassOf rdf:resource="http://protege.stanford.edu/kb#I-Node"/>

</rdf:Description>

<rdf:Description rdf:about="http://protege.stanford.edu/kb#I-Node">
<rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
<rdfs:label>I-Node</rdfs:label>
<rdfs:subClassOf rdf:resource="http://protege.stanford.edu/kb#Node"/>

</rdf:Description>

<rdf:Description rdf:about="http://protege.stanford.edu/kb#hasSchemeName">
<rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/>
<a:maxCardinality>1</a:maxCardinality>
<rdfs:label>hasSchemeName</rdfs:label>
<rdfs:domain rdf:resource="http://protege.stanford.edu/kb#Scheme"/>
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/>

</rdf:Description>

<rdf:Description rdf:about="http://protege.stanford.edu/kb#Scheme">
<rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
<rdfs:label>Scheme</rdfs:label>
<rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/>

</rdf:Description>

<rdf:Description rdf:about="http://protege.stanford.edu/kb#attacks">
<rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/>
<rdfs:label>attacks</rdfs:label>
<rdfs:range rdf:resource="http://protege.stanford.edu/kb#CA-Node"/>
<rdfs:subPropertyOf rdf:resource="http://protege.stanford.edu/kb#edgeFromINode"/>
<a:inverseProperty rdf:resource="http://protege.stanford.edu/kb#isAttacked"/>

</rdf:Description>

<rdf:Description rdf:about="http://protege.stanford.edu/kb#Premise">
<rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
<rdfs:label>Premise</rdfs:label>
<rdfs:subClassOf rdf:resource="http://protege.stanford.edu/kb#I-Node"/>

</rdf:Description>

<rdf:Description rdf:about="http://protege.stanford.edu/kb#LogicalPreferenceScheme">
<rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
<rdfs:label>LogicalPreferenceScheme</rdfs:label>
<rdfs:subClassOf rdf:resource="http://protege.stanford.edu/kb#PreferenceScheme"/>

</rdf:Description>

<rdf:Description rdf:about="http://protege.stanford.edu/kb#edge">
<rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/>
<rdfs:label>edge</rdfs:label>
<rdfs:range rdf:resource="http://protege.stanford.edu/kb#Node"/>

</rdf:Description>

<rdf:Description rdf:about="http://protege.stanford.edu/kb#DeductiveInference">
<rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
<rdfs:label>DeductiveInference</rdfs:label>
<rdfs:subClassOf rdf:resource="http://protege.stanford.edu/kb#RuleScheme"/>

</rdf:Description>

89

APPENDIX C: FULL AIF-RDF RDFS ONTOLOGY CODE

<rdf:Description rdf:about="http://protege.stanford.edu/kb#fulfilsConclusionDesc">
<rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/>
<a:maxCardinality>1</a:maxCardinality>
<rdfs:label>fulfilsConclusionDesc</rdfs:label>
<rdfs:domain rdf:resource="http://protege.stanford.edu/kb#Conclusion"/>
<rdfs:range rdf:resource="http://protege.stanford.edu/kb#ConclusionDesc"/>

</rdf:Description>

<rdf:Description rdf:about="http://protege.stanford.edu/kb#ArgOnt_Instance_50396">
<rdf:type rdf:resource="http://protege.stanford.edu/kb#Premise"/>
<kb:text>test exception</kb:text>
<rdfs:label>ArgOnt_Instance_50396</rdfs:label>
<kb:edgeFromINode rdf:resource="http://protege.stanford.edu/kb#ArgOnt_Instance_50394"/>
<kb:attacks rdf:resource="http://protege.stanford.edu/kb#ArgOnt_Instance_50394"/>
<kb:fulfilsPremiseDesc rdf:resource="http://protege.stanford.edu/kb#ArgOnt_Instance_12"/>

</rdf:Description>

<rdf:Description rdf:about="http://protege.stanford.edu/kb#entails">
<rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/>
<a:maxCardinality>1</a:maxCardinality>
<rdfs:label>entails</rdfs:label>
<rdfs:domain rdf:resource="http://protege.stanford.edu/kb#PremiseDesc"/>
<rdfs:range rdf:resource="http://protege.stanford.edu/kb#Presumption"/>

</rdf:Description>

<rdf:Description rdf:about="http://protege.stanford.edu/kb#fulfilsScheme">
<rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/>
<a:maxCardinality>1</a:maxCardinality>
<rdfs:label>fulfilsScheme</rdfs:label>
<rdfs:domain rdf:resource="http://protege.stanford.edu/kb#S-Node"/>
<rdfs:range rdf:resource="http://protege.stanford.edu/kb#Scheme"/>

</rdf:Description>

<rdf:Description rdf:about="http://protege.stanford.edu/kb#caNode_isAttacked">
<rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/>
<rdfs:label>caNode_isAttacked</rdfs:label>
<rdfs:range rdf:resource="http://protege.stanford.edu/kb#CA-Node"/>
<rdfs:domain rdf:resource="http://protege.stanford.edu/kb#I-Node"/>
<a:inverseProperty rdf:resource="http://protege.stanford.edu/kb#caNode_Attacks"/>
<rdfs:subPropertyOf rdf:resource="http://protege.stanford.edu/kb#edgeFromSNode"/>

</rdf:Description>

<rdf:Description rdf:about="http://protege.stanford.edu/kb#caNode_Attacks">
<rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/>
<rdfs:label>caNode_Attacks</rdfs:label>
<rdfs:domain rdf:resource="http://protege.stanford.edu/kb#CA-Node"/>
<rdfs:range rdf:resource="http://protege.stanford.edu/kb#I-Node"/>
<a:inverseProperty rdf:resource="http://protege.stanford.edu/kb#caNode_isAttacked"/>
<rdfs:subPropertyOf rdf:resource="http://protege.stanford.edu/kb#edgeFromSNode"/>

</rdf:Description>

<rdf:Description rdf:about="http://protege.stanford.edu/kb#PresumptivePreferenceScheme">
<rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
<rdfs:label>PresumptivePreferenceScheme</rdfs:label>
<rdfs:subClassOf rdf:resource="http://protege.stanford.edu/kb#PreferenceScheme"/>

</rdf:Description>

<rdf:Description rdf:about="http://protege.stanford.edu/kb#PresumptiveInferenceScheme">
<rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
<rdfs:label>PresumptiveInferenceScheme</rdfs:label>
<rdfs:subClassOf rdf:resource="http://protege.stanford.edu/kb#RuleScheme"/>

</rdf:Description>

<rdf:Description rdf:about="http://protege.stanford.edu/kb#hasConclusion">
<rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/>
<a:maxCardinality>1</a:maxCardinality>
<a:minCardinality>1</a:minCardinality>
<rdfs:label>hasConclusion</rdfs:label>
<rdfs:range rdf:resource="http://protege.stanford.edu/kb#Conclusion"/>
<rdfs:domain rdf:resource="http://protege.stanford.edu/kb#RA-Node"/>

90

APPENDIX C: FULL AIF-RDF RDFS ONTOLOGY CODE

<rdfs:subPropertyOf rdf:resource="http://protege.stanford.edu/kb#edgeFromSNode"/>
</rdf:Description>

<rdf:Description rdf:about="http://protege.stanford.edu/kb#hasPresumption">
<rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/>
<rdfs:label>hasPresumption</rdfs:label>
<rdfs:range rdf:resource="http://protege.stanford.edu/kb#Presumption"/>
<rdfs:domain rdf:resource="http://protege.stanford.edu/kb#PresumptiveInferenceScheme"/>

</rdf:Description>

<rdf:Description rdf:about="http://protege.stanford.edu/kb#supports">
<rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/>
<rdfs:label>supports</rdfs:label>
<rdfs:domain rdf:resource="http://protege.stanford.edu/kb#Premise"/>
<rdfs:range rdf:resource="http://protege.stanford.edu/kb#RA-Node"/>
<rdfs:subPropertyOf rdf:resource="http://protege.stanford.edu/kb#edgeFromINode"/>
<a:inverseProperty rdf:resource="http://protege.stanford.edu/kb#hasPremise"/>

</rdf:Description>

<rdf:Description rdf:about="http://protege.stanford.edu/kb#CA-Node">
<rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
<rdfs:label>CA-Node</rdfs:label>
<rdfs:subClassOf rdf:resource="http://protege.stanford.edu/kb#S-Node"/>

</rdf:Description>

<rdf:Description rdf:about="http://protege.stanford.edu/kb#edgeFromSNode">
<rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/>
<a:minCardinality>1</a:minCardinality>
<rdfs:label>edgeFromSNode</rdfs:label>
<rdfs:range rdf:resource="http://protege.stanford.edu/kb#Node"/>
<rdfs:domain rdf:resource="http://protege.stanford.edu/kb#S-Node"/>
<rdfs:subPropertyOf rdf:resource="http://protege.stanford.edu/kb#edge"/>

</rdf:Description>

<rdf:Description rdf:about="http://protege.stanford.edu/kb#text">
<rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/>
<a:maxCardinality>1</a:maxCardinality>
<rdfs:label>text</rdfs:label>
<rdfs:domain rdf:resource="http://protege.stanford.edu/kb#I-Node"/>
<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/>

</rdf:Description>

<rdf:Description rdf:about="http://protege.stanford.edu/kb#Presumption">
<rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
<rdfs:label>Presumption</rdfs:label>
<rdfs:subClassOf rdf:resource="http://protege.stanford.edu/kb#Form"/>

</rdf:Description>

<rdf:Description rdf:about="http://protege.stanford.edu/kb#Node">
<rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
<rdfs:label>Node</rdfs:label>
<rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/>

</rdf:Description>

91

Appendix D

ArgDF Argument RDF Code

The below code, extracted from the Sesame RDF server, represents 2 arguments

under attack created in ArgDF. The purpose of this appendix is to show in full

how the resources are interconnected in RDF. Resources have unique identifica-

tions, with a certain type like “premise” and specific attributes which can either

be literals such as “text,” or relationships heading to other resources such as the

“supports” relationship.

The code flows by representing the first argument’s premises, conclusion and

RA-Node. Then the CA-Node, linking the arguments in conflict is presented,

followed by the second argument’s RA-Node, attacking the former one, as well

as its premises and conclusion.

<rdf:Description rdf:about="http://protege.stanford.edu/kb#ArgOnt_Instance_16">
<rdf:type rdf:resource="http://protege.stanford.edu/kb#Premise"/>
<kb:text>Allen says that Brazil has the best football team</kb:text>
<rdfs:label>ArgOnt_Instance_16</rdfs:label>
<kb:supports rdf:resource="http://protege.stanford.edu/kb#ArgOnt_Instance_13"/>
<kb:edgeFromINode rdf:resource="http://protege.stanford.edu/kb#ArgOnt_Instance_13"/>
<kb:fulfilsPremiseDesc rdf:resource="http://protege.stanford.edu/kb#ArgOnt_Instance_6"/>

</rdf:Description>

<rdf:Description rdf:about="http://protege.stanford.edu/kb#ArgOnt_Instance_15">
<rdf:type rdf:resource="http://protege.stanford.edu/kb#Premise"/>
<kb:text>Allen is an expert is sports</kb:text>
<rdfs:label>ArgOnt_Instance_15</rdfs:label>

92

APPENDIX D: ARGDF ARGUMENT RDF CODE

<kb:supports rdf:resource="http://protege.stanford.edu/kb#ArgOnt_Instance_13"/>
<kb:edgeFromINode rdf:resource="http://protege.stanford.edu/kb#ArgOnt_Instance_13"/>
<kb:fulfilsPremiseDesc rdf:resource="http://protege.stanford.edu/kb#ArgOnt_Instance_7"/>

</rdf:Description>

<rdf:Description rdf:about="http://protege.stanford.edu/kb#ArgOnt_Instance_14">
<rdf:type rdf:resource="http://protege.stanford.edu/kb#Conclusion"/>
<kb:text>Brazil has the best football team</kb:text>
<rdfs:label>ArgOnt_Instance_14</rdfs:label>
<kb:edgeFromINode rdf:resource="http://protege.stanford.edu/kb#ArgOnt_Instance_13"/>
<kb:fulfilsConclusionDesc rdf:resource="http://protege.stanford.edu/kb#ArgOnt_Instance_5"/>
<kb:CANode_isAttacked rdf:resource="http://protege.stanford.edu/kb#ArgOnt_Instance_50486"/>
<kb:edgeFromINode rdf:resource="http://protege.stanford.edu/kb#ArgOnt_Instance_50486"/>

</rdf:Description>

<rdf:Description rdf:about="http://protege.stanford.edu/kb#ArgOnt_Instance_13">
<rdf:type rdf:resource="http://protege.stanford.edu/kb#RA-Node"/>
<rdfs:label>ArgOnt_Instance_13</rdfs:label>
<kb:hasConclusion rdf:resource="http://protege.stanford.edu/kb#ArgOnt_Instance_14"/>
<kb:edgeFromSNode rdf:resource="http://protege.stanford.edu/kb#ArgOnt_Instance_14"/>
<kb:hasPremise rdf:resource="http://protege.stanford.edu/kb#ArgOnt_Instance_15"/>
<kb:edgeFromSNode rdf:resource="http://protege.stanford.edu/kb#ArgOnt_Instance_15"/>
<kb:hasPremise rdf:resource="http://protege.stanford.edu/kb#ArgOnt_Instance_16"/>
<kb:edgeFromSNode rdf:resource="http://protege.stanford.edu/kb#ArgOnt_Instance_16"/>
<kb:fulfilsScheme rdf:resource="http://protege.stanford.edu/kb#ArgOnt_Instance_4"/>

</rdf:Description>

<rdf:Description rdf:about="http://protege.stanford.edu/kb#ArgOnt_Instance_50486">
<rdf:type rdf:resource="http://protege.stanford.edu/kb#CA-Node"/>
<rdfs:label>ArgOnt_Instance_50486</rdfs:label>
<kb:CANode_Attacks rdf:resource="http://protege.stanford.edu/kb#ArgOnt_Instance_14"/>
<kb:edgeFromSNode rdf:resource="http://protege.stanford.edu/kb#ArgOnt_Instance_14"/>
<kb:isAttacked rdf:resource="http://protege.stanford.edu/kb#ArgOnt_Instance_50487"/>

</rdf:Description>

<rdf:Description rdf:about="http://protege.stanford.edu/kb#ArgOnt_Instance_50485">
<rdf:type rdf:resource="http://protege.stanford.edu/kb#RA-Node"/>
<rdfs:label>ArgOnt_Instance_50485</rdfs:label>
<kb:fulfilsScheme rdf:resource="http://protege.stanford.edu/kb#ArgOnt_Instance_4"/>
<kb:hasConclusion rdf:resource="http://protege.stanford.edu/kb#ArgOnt_Instance_50487"/>
<kb:edgeFromSNode rdf:resource="http://protege.stanford.edu/kb#ArgOnt_Instance_50487"/>
<kb:hasPremise rdf:resource="http://protege.stanford.edu/kb#ArgOnt_Instance_50488"/>
<kb:edgeFromSNode rdf:resource="http://protege.stanford.edu/kb#ArgOnt_Instance_50488"/>
<kb:hasPremise rdf:resource="http://protege.stanford.edu/kb#ArgOnt_Instance_50489"/>
<kb:edgeFromSNode rdf:resource="http://protege.stanford.edu/kb#ArgOnt_Instance_50489"/>

</rdf:Description>

<rdf:Description rdf:about="http://protege.stanford.edu/kb#ArgOnt_Instance_50487">
<rdf:type rdf:resource="http://protege.stanford.edu/kb#Conclusion"/>
<kb:text>Germany has the best football team</kb:text>
<rdfs:label>ArgOnt_Instance_50487</rdfs:label>
<kb:edgeFromINode rdf:resource="http://protege.stanford.edu/kb#ArgOnt_Instance_50485"/>
<kb:attacks rdf:resource="http://protege.stanford.edu/kb#ArgOnt_Instance_50486"/>
<kb:edgeFromINode rdf:resource="http://protege.stanford.edu/kb#ArgOnt_Instance_50486"/>
<kb:fulfilsConclusionDesc rdf:resource="http://protege.stanford.edu/kb#ArgOnt_Instance_5"/>

</rdf:Description>

<rdf:Description rdf:about="http://protege.stanford.edu/kb#ArgOnt_Instance_50489">
<rdf:type rdf:resource="http://protege.stanford.edu/kb#Premise"/>
<kb:text>Jim is an expert in sports including football</kb:text>
<rdfs:label>ArgOnt_Instance_50489</rdfs:label>
<kb:edgeFromINode rdf:resource="http://protege.stanford.edu/kb#ArgOnt_Instance_50485"/>
<kb:supports rdf:resource="http://protege.stanford.edu/kb#ArgOnt_Instance_50485"/>
<kb:fulfilsPremiseDesc rdf:resource="http://protege.stanford.edu/kb#ArgOnt_Instance_7"/>

</rdf:Description>

<rdf:Description rdf:about="http://protege.stanford.edu/kb#ArgOnt_Instance_50488">
<rdf:type rdf:resource="http://protege.stanford.edu/kb#Premise"/>
<kb:text>Jim says that Germany has the best football team</kb:text>
<rdfs:label>ArgOnt_Instance_50488</rdfs:label>

93

APPENDIX D: ARGDF ARGUMENT RDF CODE

<kb:edgeFromINode rdf:resource="http://protege.stanford.edu/kb#ArgOnt_Instance_50485"/>
<kb:supports rdf:resource="http://protege.stanford.edu/kb#ArgOnt_Instance_50485"/>
<kb:fulfilsPremiseDesc rdf:resource="http://protege.stanford.edu/kb#ArgOnt_Instance_6"/>

</rdf:Description>

94

References

[1] L. Amgoud, M. Serrut, and H. Prade. Flexible querying with argued an-

swers. In EUROFUSE Workshop on Data and Knowledge Engineering, Poland,

Sept. 2004.

[2] G. Antoniou and F. van Harmelen. A Semantic Web Primer (Cooperative

Information Systems). MIT Press, Cambridge MA, USA, 2004.

[3] K. Ashley. Modeling Legal Argument: Reasoning with Cases and Hypotheticals.

MIT Press, Cambridge, 1990.

[4] ASPIC. Argumentation service platform with integrated components, a

European Commission-funded research project (no. ist-fp6-002307), 2004.

[5] K. Atkinson, T. Bench-Capon, and P. McBurney. PARMENIDES: facilitat-

ing deliberation in democracies. Artificial Intelligence and Law – T. van En-

gers and A. Macintosh (editors), Special Issue on eDemocracy, page (to appear),

2006.

[6] M. Bachler, S. B. Shum, D. D. Roure, D. Michaelides, and K. Page. Onto-

logical mediation of meeting structure: Argumentation, annotation, and

95

REFERENCES

navigation. In Proceedings of the 1st International Workshop on Hypermedia

and the Semantic Web (HTSW2003), Nottingham, UK, 2003.

[7] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific

American, 2001.

[8] M. Beveridge and D. Milward. Combining task descriptions and ontolog-

ical knowledge for adaptive dialogue. In In Proc. TSD 2003, International

Conference on Text Speech and Dialogue, Ceske Budejovice, Czech Republic,

2003.

[9] M. Beveridge and D. Milward. Defnition of the high-level task specifi-

cation language. technical report, deliverable d11, eu homey project, ist-

2001-3243, 2003.

[10] M. Beveridge and D. Milward. Ontology-based dialogue systems. In In

Proc. IJCAI 3rd Workshop on Knowledge and Reasoning in Practical Dialogue

Systems, Acapulco, Mexico, aug 2003.

[11] D. Carbogim, D. Robertson, and J. Lee. Argument-based applications

to knowledge engineering. Knowledge Engineering Review, 15(2):119–149,

2000.

[12] C. I. Chesñevar, A. Maguitman, and R. Loui. Logical models of argument.

ACM Computing Surveys, 32(4):337–383, 2000.

[13] C. I. Chesñevar, J. McGinnis, S. Modgil, I. Rahwan, C. Reed, G. Simari,

96

REFERENCES

M. South, G. Vreeswijk, and S. Willmott. Towards an argument interchange

format. The Knowledge Engineering Review, 2007.

[14] Compendium. The Compendium Institute, 2005.

http://www.compendiuminstitute.org.

[15] J. Conklin. Designing organizational memory: Preserving intellectual as-

sets in a knowledge economy, 2001. Gognexus White Paper.

[16] J. Conklin and M. L. Begeman. gIBIS: a hypertext tool for exploratory

policy discussion. ACM transactions on office information systems, 6(4):303–

331, 1988.

[17] A. S. COULSON, D. W. GLASSPOOL, J. FOX, and J. EMERY. Rags : A

novel approach to computerized genetic risk assessment and decision sup-

port from pedigrees. Methods of information in medicine (Methods inf. med.),

40(4):315–322, 2001.

[18] M. Dacota, L. Obrst, and K.Smith. The Semantic Web Ű A Guide to the Future

of XML, Web Services, and Knowledge Management. Wiley, 2003.

[19] P. M. Dung. On the acceptability of arguments and its fundamental role in

nonmonotonic reasoning, logic programming and n-person games. Artifi-

cial Intelligence, 77(2):321–358, 1995.

[20] D.W.Glasspool, J.Fox, F.D.Castillo, and V.Monaghan. Interactive decision

support for medical planing. In 9th Conference on Artificial Intelligence in

Medicine in Europe (AIME 2003). Springer, 2003.

97

REFERENCES

[21] A. Garcia and G. Simari. Defeasible logic programming: An argumentative

approach. Theory and Practice of Logic Programming, 2002.

[22] T. V. Gelder. A reason!able approach to critical thinking. Principal Matters:

The Journal for Australasian Secondary School Leaders, 34(6), 2002.

[23] T. F. Gordon and N. Karacapilidis. The Zeno argumentation framework. In

Proceedings of the Sixth International Conference on AI and Law, pages 10–18,

New York, NY, USA, 1997. ACM Press.

[24] T. F. Gordon and D. Walton. The Carneades argumentation framework. In

P. Dunne and T. Bench-Capon, editors, Proceedings of the 1st International

Conference on Computational Models of Argument (COMMA), pages 195–207,

Amsterdam, The Netherlands, 2006. IOS Press.

[25] K. Greenwood, T. Bench-Capon, and P. McBurney. Structuring dialogue

between the people and their representatives. In R. Traunmuller, edi-

tor, Electronic Government: Proceedings of the Second International Conference

(EGOV03), Prague, Czech Republic, volume 2739 of Lecture Notes in Computer

Science, pages 55–62, Berlin, Germany, 2003. Springer.

[26] K. Greenwood, T. Bench-Capon, and P. McBurney. Towards a computa-

tional account of persuasion in law. In G. Sartor, editor, Proceedings of the

Ninth International Conference on AI and Law (ICAIL-03), pages 22–31, New

York, NY, USA, 2003. ACM Press.

[27] T. Gruber. A translation approach to portable ontologies. Knowledge Acqui-

sition, 5(2):199–220, 1993.

98

REFERENCES

[28] N. Karacapilidisa and D. Papadias. Computer supported argumentation

and collaborative decision making: the HERMES system. Information Sys-

tems, 26:259–277, 2001.

[29] G. Karvounarakis, A. Magkanaraki, S. Alexaki, V. Christophides, D. Plex-

ousakis, M. Scholl, and K. Tolle. Querying the semantic web with rql.

Computer Networks 42, 42(5):617Ű640, 2003.

[30] P. Krause, P. Judson, and M. Patel. Qualitative risk assessment fulfills a

need. In A. Hunter and S. Parsons, editors, Appplications of Uncertainty

Formalisms. Springer-Verlag, Berlin, Germany, 1998.

[31] J. Lee. Sibyl: a tool for managing group decision rationale. In Proceedings

of the conference on computer-supported cooperative work, pages 79–92, New

York, USA, 1990. ACM Press.

[32] R. Lüehrs, T. Malsch, and K. Voss. Internet, discourses and democracy.

In T. Terano, T. Nishida, A. Namatame, S. Tsumoto, Y. Ohsawa, and

T. Washio, editors, New Frontiers in Artificial Intelligence, volume 2253 of

Lecture Notes in Computer Science, pages 67–74. Springer-Verlag, Heidel-

berg, Germany, 2001.

[33] D. L. McGuinness and F. van Harmelen. Web ontology language (OWL):

Overview. Technical report, W3C Working Draft, 31 March 2003.

[34] php. http://www.php.net, 2006.

99

REFERENCES

[35] J. L. Pollock. Rational cognition in oscar. In Intelligent Agents V (ATAL-99),

London, UK, 1999. Springer-Verlag.

[36] H. Prakken, C. Reed, and D. N. Walton. Dialogues about the burden of

proof. In Proceedings of the 10th international conference on artificial intel-

ligence and law (ICAIL), pages 115–124, New York NY, USA, 2005. ACM

Press.

[37] H. Prakken and G. Vreeswijk. Encoding schemes for a discourse support

system for legal argument. In Working Notes of the ECAI 2002 workshop

on Computational Model of Natural Argument (CMNA), Lyon, France, 22 July,

pages 31–39, 2002.

[38] H. Prakken and G. Vreeswijk. Logics for defeasible argumentation. In

D. Gabbay and F. Guenthner, editors, Handbook of Philosophical Logic, vol-

ume 4, pages 219–318. Kluwer Academic Publishers, Dordrecht, Nether-

lands, second edition, 2002.

[39] Protégé. http://protege.stanford.edu, 2006.

[40] I. Rahwan, C. Reed, and F. Zablith. On building argumentation schemes

using the argument interchange format. In Proceedings of the IJCAI Work-

shop on Computational Models of Natural Argument (CMNA), Hyderabad, In-

dia, Jan 2007.

[41] B. Rolf and C. Magnusson. Developing the art of argumentation: A soft-

ware approach. In F. H. van Eemeren, C. A. Willard, and A. F. S. Henke-

mans, editors, Proceedings of the 5th Conference of the International Society

100

REFERENCES

for the Study of Argumentation (ISSA), University of Amsterdam, June 25-28,

pages 919–925, Amsterdam, The Netherlands, 2002. Sic Sat.

[42] G. W. A. Rowe, C. A. Reed, and J. Katzav. Araucaria: Marking up argu-

ment. In European Conference on Computing and Philosophy, 2003.

[43] B. Schmidt-Belz, C. Rinner, and T. F. Gordon. Geomed for urban planning

- first user experiences. In GIS ’98: Proceedings of the 6th ACM international

symposium on Advances in geographic information systems, pages 82–87, New

York, NY, USA, 1998. ACM Press.

[44] Sesame. http://www.openrdf.com, 2006.

[45] S. B. Shum, V. Uren, G. Li, B. Sereno, and C. Mancini. Modelling natu-

ralistic argumentation in research literatures: Representation and interac-

tion design issues. International Journal of Intelligent Systems, Special Issue

on Computational Modelling of Naturalistic Argumentation (to appear), 22(1),

2007.

[46] D. Skalak and E. Rissland. Arguments and cases. an inevitable intertwin-

ing. Artifcial Intelligence and Law, 1:3–44, 1992.

[47] S. Toulmin. The Uses of Argument. Cambridge University Press, UK, 1964.

[48] truthmapping. http://www.truthmapping.com, 2006.

[49] B. Verheij. Artificial argument assistants for defeasible argumentation. Ar-

tificial Intelligence, 150(1–2):291–324, 2003.

101

REFERENCES

[50] G. Vreeswijk. Iacas: an implementation of chisholm’s principles of knowl-

edge.

[51] D. N. Walton. Argumentation Schemes for Presumptive Reasoning. Erlbaum,

Mahwah NJ, USA, 1996.

[52] D. N. Walton and E. C. W. Krabbe. Commitment in Dialogue: Basic Concepts

of Interpersonal Reasoning. State University of New York Press, New York,

1995.

102

